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5.1 INTRODUCTION

This section gives the extensive formulation for the geocentric space-fixed
position, velocity, and acceleration vectors of a fixed tracking station on Earth.
These vectors are referred to the celestial reference frame defined by the
planetary ephemeris (the planetary ephemeris frame, PEF).

Section 5.2 gives the formulation for the Earth-fixed position vector rb of a
fixed tracking station on Earth. The rectangular components of this vector are
referred to the true pole, prime meridian, and equator of date. The formulation
includes terms for the coordinates of the tracking station (referred to the mean
pole, prime meridian, and equator of 1903.0), the Earth-fixed velocity
components of the tracking station due to plate motion, polar motion, solid
Earth tides, ocean loading, and the pole tide. Section 5.3 gives the formulation for
the Earth-fixed to space-fixed transformation matrix TE and its first and second
time derivatives with respect to coordinate time ET. The matrix TE includes the
frame-tie rotation matrix, which relates the radio frame RF (a particular celestial
reference frame maintained by the International Earth Rotation Service, IERS)
and the PEF. Without the frame-tie rotation matrix, the matrix TE would rotate
to the RF. With the frame-tie rotation matrix included, TE rotates to the PEF.
Program PV uses an alternate version of TE which rotates from the Earth-fixed
coordinate system referred to the mean pole, prime meridian, and equator of
1903.0. This version of TE is obtained from the version used in Regres by adding
rotations through the polar motion angles X and Y.

Section 5.4 uses rb and TE and its time derivatives to calculate the
geocentric space-fixed position, velocity, and acceleration vectors of a fixed
tracking station on Earth, referred to the PEF. When the ODP uses the Solar-
System barycentric space-time frame of reference, the geocentric space-fixed
position vector of the tracking station is transformed from the local geocentric
space-time frame of reference to the Solar-System barycentric space-time frame
of reference using Eq. (4�10).
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The partial derivatives of the geocentric space-fixed position vector of the
tracking station with respect to Earth-fixed station coordinates and other solve-
for parameters are given in Section 5.5.

The time argument for calculating the Earth-fixed position vector rb and
the Earth-fixed to space-fixed transformation matrix TE and its time derivatives is
coordinate time ET in the Solar-System barycentric or local geocentric space-time
frame of reference. For a spacecraft light-time solution, the time argument will
be the reception time t3(ET) in coordinate time ET at the receiving station on
Earth or the transmission time t1(ET) at the transmitting station on Earth. For a
quasar light-time solution, the time argument will be the reception time t1(ET) of
the quasar wavefront at receiving station 1 on Earth or the reception time t2(ET)
of the wavefront at receiving station 2 on Earth.

5.2 EARTH-FIXED POSITION VECTOR OF TRACKING
STATION

The Earth-fixed position vector rb of a fixed tracking station on Earth, with
rectangular components referred to the true pole, prime meridian, and equator
of date, is given by the following sum of terms:
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Subsections 5.2.1 to 5.2.8 correspond to the eight terms of Eq. (5�1). Each section
defines the corresponding term of Eq. (5�1) and gives the formulation for
computing it.

5.2.1 1903.0 POSITION VECTOR OF TRACKING STATION OR NEARBY

SURVEY BENCHMARK

The first term of Eq. (5�1) contains the geocentric Earth-fixed position
vector     rb0

 of the tracking station or a nearby survey benchmark, with
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rectangular components referred to the mean pole, prime meridian, and equator
of 1903.0. The station location is the intersection of the two axes of the antenna. If
the axes do not intersect, it is on the primary axis (Earth-fixed) where the
secondary axis (which moves relative to the Earth as the antenna rotates) would
intersect it if the axis offset b were reduced to zero. The Earth-fixed position
vector     rb0

 is multiplied by the solve-for scale factor α, whose nominal value is
unity. The vector     rb0

 is calculated from cylindrical or spherical station
coordinates obtained from the GIN file. For cylindrical coordinates,
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λ km (5�2)

where u is the distance from the 1903.0 pole, v is the perpendicular distance from
the 1903.0 equatorial plane (positive north of the equator), and λ is the east
longitude (degrees). For spherical coordinates,
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where r is the geocentric radius, φ is the geocentric latitude measured from the
1903.0 equatorial plane (degrees), and λ is the east longitude. Since the Earth-
fixed velocity vector     úrb  in term three of Eq. (5�1) acts from the user input epoch
t0 to the current time t, the station coordinates in Eqs. (5�2) and (5�3) are the
values at t0.

5.2.2 VECTOR OFFSET FROM SURVEY BENCHMARK TO TRACKING

STATION

If the first term of Eq. (5�1) contains the geocentric Earth-fixed position
vector of a survey benchmark, the second term is the Earth-fixed position vector
from the benchmark to the station location, with rectangular components
referred to the mean pole, prime meridian, and equator of 1903.0:
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      ∆r N E Zb N E U0
= + +d d d km (5�4)

where dN, dE, and dU are the components of this vector along the north N, east E,
and zenith Z unit vectors at the benchmark. These unit vectors are computed
from the geodetic latitude φg and the east longitude λ of the benchmark:
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(5�5)

    

N =
−
−

















sin cos
sin sin

cos

φ λ
φ λ

φ

g

g

g

(5�6)

    

E =
−















sin
cos

λ
λ

0
(5�7)

The geodetic latitude is computed from:

  
φ φ φ φg g= −( ) + (5�8)

where φ is the geocentric latitude of the benchmark and (φg − φ) is computed
from Eq. (386) of Moyer (1971) (or an equivalent equation), which is a function of
φ and the geocentric radius r of the tracking station. Evaluation of Eqs. (5�5) to
(5�8) requires the spherical station coordinates r, φ, and λ relative to the mean
pole, prime meridian, and equator of 1903.0. If the input station coordinates are
cylindrical, they can be converted to spherical coordinates using:

    r u v= +2 2 (5�9)

    
φ = 





−tan 1 v
u

(5�10)
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λ λ= (5�11)

5.2.3 DISPLACEMENT DUE TO EARTH-FIXED VELOCITY VECTOR

The third term of Eq. (5�1) is the displacement of the tracking station due
to the Earth-fixed velocity vector     úrb  of the tracking station (due to plate motion)
acting from the user input epoch t0 to the current time t. These epochs are
measured in coordinate time ET of the Solar-System barycentric or local
geocentric frame of reference. The Earth-fixed velocity vector is calculated from:

      
ú

.
r N E Zb = + +( )1

3 15576 x 1012 N E Uv v v km/s (5�12)

where vN, vE, and vU are the components of     úrb  along the north, east, and zenith
unit vectors in cm/year. These vectors are calculated from the 1903.0 spherical
coordinates of the tracking station (at the epoch t0) using Eqs. (5�5) to (5�8). The
same set of solve-for velocity components can be used for all tracking stations
within each DSN complex.

5.2.4 ORIGIN OFFSET

The fourth term of Eq. (5�1) is the Earth-fixed vector rO from the center of
mass of the Earth to the fixed point within the Earth, which is the origin for the
input station coordinates used to compute     rb0

 from Eq. (5�2) or (5�3). The vector
rO has rectangular components referred to the mean pole, prime meridian and
equator of 1903.0:
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5.2.5 POLAR MOTION

The sum of the first four terms of Eq. (5�1) is referred to the mean pole,
prime meridian, and equator of 1903.0. The fifth term of Eq. (5�1) is the polar
motion correction ∆rPM. Addition of the fifth term to the sum of the first four
terms rotates this approximation to rb from the mean pole, prime meridian, and
equator of 1903.0 to the true pole, prime meridian, and equator of date.

In order to calculate the polar motion correction ∆rPM, the time argument
for calculating rb must be converted from coordinate time ET to Coordinated
Universal Time UTC, as described in Subsection 5.2.5.1. The argument UTC is
used to interpolate the TP (timing and polar motion) array or the EOP (Earth
Orientation Parameter) file for the X and Y angular coordinates of the true pole
of date relative to the mean pole of 1903.0. The equation for calculating ∆rPM

from the X and Y coordinates of the true pole of date is derived in Subsection
5.2.5.2.

5.2.5.1 Time Transformation and Interpolation for Coordinates of the Pole

The time argument for calculating rb must be converted from coordinate
time ET to International Atomic Time TAI and then to Coordinated Universal
Time UTC. In the Solar-System barycentric space-time frame of reference,
calculate ET − TAI from the approximate expression given by Eqs. (2�26) to
(2�28). In the latter equation, t is the ET value of the time argument expressed in
seconds past J2000.0. In the local geocentric space-time frame of reference,
ET − TAI is given by Eq. (2�30). Subtract ET − TAI from ET to give TAI. Using
TAI as the argument, interpolate the TP array or the EOP file for TAI − UTC and
subtract it from TAI to give UTC. Using UTC as the argument, re-interpolate the
TP array or the EOP file for TAI − UTC and subtract it from TAI to give a second
value of UTC. Using the second value of UTC as the argument, interpolate the
TP array or the EOP file for the X and Y angular coordinates of the true pole of
date relative to the mean pole of 1903.0. Convert these coordinates from seconds
of arc to radians. The X and Y coordinates are measured south along the 0° and
90° W meridians, respectively, of 1903.0.
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5.2.5.2 Polar Motion Correction

The sum of the first four terms of Eq. (5�1) is an approximation to the
Earth-fixed position vector of a fixed tracking station on Earth, with rectangular
components referred to the mean pole, prime meridian, and equator of 1903.0.
Let this vector be denoted by:
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This vector can be rotated from the rectangular coordinate system referred to
the mean pole, prime meridian, and equator of 1903.0 to the rectangular
coordinate system referred to the true pole, prime meridian, and equator of date
using:

      r rb x y btrue 1903.0
= ( ) ( )R Y R X km (5�15)

where Ry(X) is a rotation of the Earth-fixed 1903.0 rectangular coordinate system
about its y axis through the angle X, and Rx(Y) is a rotation of the resulting
coordinate system about its x axis through the angle Y. The coordinate system
rotation matrices for the rotation of a rectangular coordinate system about its x,
y, and z axes through the angle θ (using the right-hand rule) and their
derivatives with respect to θ are given by:
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The polar motion correction ∆rPM in Eq. (5�1) is defined to be:

    ∆r r rPM b btrue 1903.0
= − km (5�19)

Substituting Eq. (5�15) gives:

      
∆r rPM x y b1903.0

= ( ) ( ) −[ ]R Y R X I km (5�20)

where I is the 3 x 3 identity matrix:

    

I =
















1 0 0
0 1 0
0 0 1

(5�21)

Eq. (5�20) is evaluated by substituting Eqs. (5�14), (5�16), (5�17), and (5�21). The
two coordinate system rotation matrices are evaluated using the first-order
approximations: cos X = cos Y = 1, sin X = X, and sin Y = Y. In the product of the
two matrices, the second-order term XY is ignored. The resulting expression for
the polar motion correction is:
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where, from Eq. (5�14), xb, yb, and zb are rectangular components referred to the
mean pole, prime meridian, and equator of 1903.0 of the Earth-fixed position
vector of a fixed tracking station on Earth, calculated from the first four terms of
Eq. (5�1).
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The effect of the neglected second-order terms in Eq. (5�22) on the Earth-
fixed position vector of a tracking station is less than 0.1 mm. The components of
the polar motion correction (5�22) are less than 20 m.

5.2.6 SOLID EARTH TIDES

The sixth term of Eq. (5�1) is the displacement ∆rSET of a fixed tracking
station on Earth due to solid Earth tides. The Earth-fixed rectangular components
of this vector are referred to the true pole, prime meridian, and equator of date.
Subsection 5.2.6.1 gives the expression for the tidal potential W2 at the tracking
station, which is calculated from the Earth-fixed position vectors of the tracking
station, the Moon, and the Sun. Subsection 5.2.6.2 derives the equations for the
first-order displacement of the tracking station due to solid earth tides. The
components of this displacement are calculated from W2 and its derivatives with
respect to the tracking station coordinates. Subsection 5.2.6.3 expresses the tidal
potential as a spherical harmonic expansion. The equations for calculating the
angular argument for each term (a specific tide) of the tidal potential are given in
that section and in Subsection 5.2.6.4. The displacement of the tracking station
due to each term of the tidal potential is proportional to the Love number h2 in
the radial direction and the Love number l2 in the north and east directions.
These Love numbers are frequency dependent and are different for each term of
the tide-generating potential. However, the equation in Subsection 5.2.6.2 for the
first-order tidal displacement uses constant values of h2 and l2. Subsection 5.2.6.5
gives a second-order correction to the tidal displacement of a tracking station. It
is a correction to the radial displacement due to the departure of the value of h2

for a particular term of the astronomical tide-generating potential (the so-called
K1 diurnal tide) from the constant value of h2 used in calculating the first-order
tidal displacement. Subsection 5.2.6.6 develops expressions for the constant part
of the displacement of a tracking station due to solid Earth tides. This permanent
tidal displacement is included in the expression for the first-order displacement. If
the permanent tidal displacement was subtracted from the sum of the first-order
and second-order tidal displacements, then the estimated coordinates of the
tracking station would include the permanent tidal displacement. However, this
is not done by international agreement.
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5.2.6.1 Tidal Potential W2

The tidal potential can be represented to sufficient accuracy by the
spherical harmonic function W2, which is of the second degree. Second-degree
tidal displacements are on the order of 50 cm. Third-degree tidal displacements
are less than a centimeter and are ignored. The tidal potential W2, which is based
upon a spherical Earth and a point-mass perturbing Moon or Sun, is given by
Eq. (1.11) on p. 15 of Melchior (1966). Adding the terms due to the Moon and the
Sun gives:

    

W
r
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z
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jj
j2

2

3
2

3
2

2
3 1= −( )

=
∑ µ

cos km2/s2 (5�23)

where

j = disturbing body (2 = Moon, 3 = Sun).
µj = gravitational constant of body j, km3/s2.
Rj = geocentric radial coordinate of body j, km.
r = geocentric radial coordinate of tracking station (W2 is the

tidal potential at that point), km.
zj = angle measured at the center of the Earth from the

tracking station to body j.

In order to calculate cos zj, let

Rj = geocentric Earth-fixed position vector of body j, with
rectangular components referred to the true pole, prime
meridian, and equator of date.

r = geocentric Earth-fixed position vector of the tracking
station, with rectangular components referred to the true
pole, prime meridian, and equator of date.
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The unit vectors       
� �R rj  and  are given by:

      

�R
R

j
j

jR
= (5�24)

      
�r

r=
r

(5�25)

where Rj and r are the magnitudes of Rj and r, respectively. Then,

      cos � �z j j= ⋅r R (5�26)

Melchior (1966) calculated the rectangular components of the acceleration
at a tracking station on Earth due to the disturbing body (the Moon or the Sun)
minus the corresponding acceleration components at the center of the Earth. He
used these relative acceleration components to calculate the variation dg in the
radial gravity g (on a spherical Earth) and the deflection e of the vertical due to
disturbing body j. His expression for dg is his Eq. (1.10):
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where g is the acceleration of gravity at the tracking station given by:

    
g

r
=

µE
2 km/s2 (5�28)

where
µE = gravitational constant of the Earth, km3/s2.

Eq. (5�27) can be obtained from the term of Eq. (5�23) for disturbing body j

using:
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Melchior�s expression for the deflection e of the vertical is his Eq. (1.9):
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This equation can be obtained from the term of Eq. (5�23) for disturbing body j

using:

    
e
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= − 1 2∂
∂

(5�31)

5.2.6.2 First-Order Displacement of the Tracking Station Due to Solid Earth

Tides

From Melchior (1966), p. 114, Eq. (2.19), the components of the
displacement of the tracking station due to solid Earth tides are given by the
following functions of the tidal potential W2 and its partial derivatives with
respect to the geocentric latitude φ and longitude λ of the tracking station:
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2 km (5�32)
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km (5�34)

where the displacement sr is in the geocentric radial direction. The transverse
displacements sφ and sλ are normal to the geocentric radius, directed toward the
north and east, respectively. The acceleration of gravity g at the tracking station
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is given by Eq. (5�28). The quantities h2 and l2 are second-degree Love numbers.
From International Earth Rotation Service (1992), p. 57, the nominal values of
these Love numbers are:

    

h

l
2

2

0 6090
0 0852

=
=

.

.
(5�35)

Wahr (1981), p. 699, Table 5 lists these numerical values as the appropriate values
for any semi-diurnal tide component.

Eq. (5�32) follows because the geoid (mean sea level) is an equipotential
surface, where the potential is the sum of the gravitational and centrifugal
potential (see Subsection 5.2.8). Addition of the tidal potential W2 requires the
radial displacement of the ocean given by Eq. (5�32) with h2 = unity in order to
keep the potential constant. Eqs. (5�33) and (5�34) with l2 = unity give the
transverse displacements of the ocean. If these equations are multiplied by g and
divided by r, the right-hand sides give the transverse tidal accelerations, which
are balanced by the left-hand sides, which are the components of gravity at the
displaced positions normal to the geocentric radial at the original position. These
accelerations are equal and opposite.

The displacement of the Earth-fixed position vector rb of the tracking
station due to solid Earth tides is given by:

      ∆r r N Eb = + +s s sr � φ λ km (5�36)

where, for a spherical Earth, the north and east unit vectors are given by:
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The unit vector     �r  in the geocentric radial direction is given by:
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and
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The geocentric latitude φ, longitude λ, all Earth-fixed vectors and unit vectors
appearing in this section, and the displacement ∆rb are referred to the Earth-fixed
rectangular coordinate system aligned with the true pole, prime meridian, and
equator of date.

Evaluating sr using Eqs. (5�32), (5�28), (5�23), and (5�26) gives:
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Evaluating sφ using Eqs. (5�33), (5�28), (5�23), (5�26), and (5�40) gives:
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Evaluating sλ using Eqs. (5�34), (5�28), (5�23), (5�26), and (5�41) gives:
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After substituting Eqs. (5�42) to (5�44) into (5�36), the sum of terms two and
three of (5�36) is given by a common factor multiplied by the following function,
which can be expressed as:

      
� � � � � �R N N R E E R R r rj j j j⋅( ) + ⋅( ) = − ⋅( ) (5�45)

Hence, substituting Eqs. (5�42) to (5�44) into (5�36) and then substituting
Eq. (5�45) into the resulting expression gives the following equation for the first-
order term of the displacement of the Earth-fixed tracking station due to solid
Earth tides:
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� � � � � �

km (5�46)

This is Eq. (6) on p. 57 of International Earth Rotation Service (1992).

Eq. (5�46) was derived assuming that the solid Earth responds
instantaneously to the tide-producing potential W2. In order to allow for a delay
in the elastic response of the solid Earth to W2, the radial, north, and east
components of the displacement of the tracking station will be computed from
Eqs. (5�42) to (5�44) using phase-shifted values of the unit vectors     �r , N, and E:

      
� � �r r r N Ep ,  = →L (5�47)

where L is a positive rotation of the Earth-fixed rectangular coordinate system
about its z axis through the angle ψ (see Eq. 5�18):
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L = −
















cos sin
sin cos

ψ ψ
ψ ψ

0
0

0 0 1
(5�48)

The phase shift ψ will be an input constant (nominally 0°). If Eqs. (5�37) to (5�39)
and (5�48) are substituted into Eq. (5�47), it is seen that the phase-shifted unit
vectors     N E rp p p,  ,  and �  can be calculated from Eqs. (5�37) to (5�39) with the
longitude λ of the tracking station replaced with λ − ψ. Using these phase-shifted
unit vectors to calculate the radial, north, and east components of the tidal
displacement of the tracking station from Eqs. (5�42) to (5�44) causes the peak
radial tide to occur ψ/ωE seconds after the tracking station meridian passes
under the disturbing body (the Moon or the Sun), where ωE is the angular
rotation rate of the Earth.

The radial, north, and east displacements calculated from Eqs. (5�42) to
(5�44) using the phase-shifted unit vectors     N E rp p p,  ,  and �  are substituted into
Eq. (5�36). However, the unit vectors     N E r,  ,  and �  appearing explicitly in
Eq. (5�36) are not phase shifted. Before substituting Eq. (5�45) into this phase-
shifted version of Eq. (5�36), two modifications must be made. First, evaluate
Eq. (5�45) with the phase-shifted unit vectors     N E rp p p,  ,  and � :

      
� � � � � �R N N R E E R R r rj j j j⋅( ) + ⋅( ) = − ⋅( )p p p p p p (5�49)

Next, pre-multiply each term of this equation by LT, which gives:

      
� � � � � �R N N R E E R R r rj j j jL⋅( ) + ⋅( ) = − ⋅( )p p

T
p (5�50)

Substituting Eq. (5�50) into the phase-shifted version of Eq. (5�36) gives the
phase-shifted version of Eq. (5�46):
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If the phase shift ψ is set to zero, this equation reduces to Eq. (5�46). Eq. (5�51) is
the final expression for the first-order term of the displacement of the Earth-fixed
tracking station due to solid Earth tides.

Eq. (5�51) is evaluated by executing the following steps:

1. The geocentric Earth-fixed position vector r of the tracking station,
with rectangular components referred to the true pole, prime
meridian, and equator of date is given by the sum of the first five
terms of Eq. (5�1). Calculate the magnitude r of the vector r, and
then calculate the unit vector     �r  to the tracking station from
Eq. (5�25). Using the input phase shift ψ, calculate L from Eq. (5�48)
and the phase-shifted unit vector     

�rp  to the tracking station from Eq.
(5�47). In evaluating Eq. (5�51), the unit vector     �r  is used once and the
phase-shifted unit vector     

�rp  is used twice.

2. The time argument for calculating the geocentric Earth-fixed and
space-fixed position vectors of the fixed tracking station on Earth is
coordinate time ET in the Solar-System barycentric or local
geocentric space-time frame of reference. Using this ET time
argument, interpolate the planetary ephemeris for the geocentric (E)
space-fixed position vectors of the Moon (M) and the Sun (S):

    r rM
E

S
E   ,    

3. Using the ET time argument, calculate the 3 x 3 Earth-fixed to space-
fixed transformation matrix TE (using the formulation given in
Section 5.3).

4. Transform the geocentric space-fixed position vectors of the Moon
and the Sun to the corresponding Earth-fixed position vectors, with
rectangular components referred to the true pole, prime meridian,
and equator of date:

      R r2 = TE
T

M
E km (5�52)
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      R r3 = TE
T

S
E km (5�53)

where the superscript T indicates the transpose of the matrix.
Calculate the magnitudes R2 and R3 of these vectors. Then calculate
the unit vector     

�R2 to the Moon and the unit vector     
�R3 to the Sun

from Eq. (5�24).

5. Using r,     �r ,     
�rp , and L from step 1; R2, R3,     

�R2, and     
�R3 from step 4; the

input values of the Love numbers h2 and l2; and the gravitational
constants µ2 of the Moon, µ3 of the Sun, and µE of the Earth obtained
from the planetary ephemeris, calculate the first-order term of the
Earth-fixed displacement ∆rSET (term six of Eq. 5�1) of the tracking
station due to solid Earth tides from Eq. (5�51).

5.2.6.3 Expansion of the Tidal Potential

Cartwright and Tayler (1971) and Wahr (1981) express the tidal potential
W (divided by the acceleration of gravity g given by Eq. 5�28) as a spherical
harmonic expansion with time-dependent (i.e., sinusoidal) coefficients1.
However, their equations are vague and ambiguous. These equations were
compared to the corresponding equations in Melchior (1966). This comparison
enabled the exact form of the spherical harmonic expansion of W/g to be
determined. It is given by:

    

W
g

H W ms n
m

s
sm

n

n

= ( ) +( )∑∑∑
==

φ θ λ
cos
sin

02

3

m (5�54)

where the cosine applies when (n + m) is even and the sine applies when (n + m)
is odd. Let     Wn

m φ λ,( )  be the normalized spherical harmonic of degree n and
order m in the geocentric latitude φ and longitude λ of the point on a spherical

                                                
1Since terms of different degree are included, the subscript 2 of W2 (indicating degree 2) is

dropped.
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Earth where W/g is evaluated. From Eq. (10) of Cartwright and Tayler (1971) or
Eq. (2.4) of Wahr (1981), it is given by:

    
W

n n m
n m

P en
m m

n
m imφ λ

π
φ λ,( ) = −( ) + ⋅

−( )
+( )









 ( )1

2 1
4

1
2!

!
sin (5�55)

where     Pn
m sinφ( )  is the associated Legendre function of sine latitude. From

Eq. (3.49) of Jackson (1975), without the factor (−1)m which is included separately
in Eq. (5�55),

    
P

d

d
Pn

m m
m

m nsin cos
sin

sinφ φ
φ

φ( ) =
( )

( ) (5�56)

which is Eq. (155) of Moyer (1971). In Eq. (5�56),     Pn sinφ( ) is the Legendre
polynomial of degree n in sin φ. From Eq. (3.16) of Jackson (1975),

    
P

n

d

d
n n

n

n

n
sin

! sin
sinφ

φ
φ( ) =

( )
−( )1

2
12 (5�57)

The Legendre polynomials can be computed from this equation or can be
computed recursively from Eqs. (175) to (177) of Moyer (1971). Substituting
Eq. (5�57) into Eq. (5�56) gives     Pn

m sinφ( ) as a direct function of sin φ:

    
Pn

m sinφ( ) = cosm φ
2n n!

dn+m

d sinφ( )n+m
sin2 φ − 1( )n

(5�58)

This is Eq. (11) of Cartwright and Tayler (1971) and Eq. (2.5) of Wahr (1981). In
Eq. (5�54),     W Wn

m
n
mφ φ λ( ) ( ) is ,  given by Eq. (5�55) without the factor   e imλ . That

is,

    W e Wn
m im

n
mφ φ λλ( ) = ( )− , (5�59)
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which is a function of the geocentric latitude φ. The function   Wn
m φ( ) given by

Eqs. (5�55) to (5�59) has been evaluated for n = 2 and 3 for m = 0 to n in Table 2
of Cartwright and Tayler (1971) and on pages 99 and 100 of Jackson (1975).
However, these functions are expressed in terms of sines and cosines of the co-
latitude (90° − φ).

Each term of Eq. (5�54) corresponds to a specific solid Earth tide. The
summation is over the degree n, the order m which varies from 0 to n, and all of
the tides s for a given degree n and order m. For each tide s, Hs is the amplitude
(in meters) and θs is the phase angle or astronomical argument, which is defined
by the sequence of six integers n1 through n6. Given these integers, the value of
θs at a given time t is computed from the equation on p. 53 of International Earth
Rotation Service (1992):

    
θs = ni βi

i=1

6

∑ (5�60)

where β1 through β6 are the Doodson variables. They are astronomical angles
which are computed from sums and differences of the five fundamental angular
arguments of the nutation series and mean sidereal time. The definitions of β1

through β6 and the polynomials for computing them as a function of time are
given in Subsection 5.2.6.4. For each tide, the six integers n1 through n6 are coded
into the Doodson argument number (see p. 65 of International Earth Rotation
Service (1992)):

    n1 n2 + 5( ) n3 + 5( ). n4 + 5( ) n5 + 5( ) n6 + 5( ) (5�61)

This is a sequence of six positive integers separated by a central dot. The
Doodson variables β2 through β6 are slowly varying angles. However, β1

contains mean sidereal time and has a frequency of about 1 cycle/day. Also, the
integer n1 in the Doodson argument number for each tide is equal to the order
m:

    n1 = m (5�62)
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Hence, from Eq. (5�60), the frequency of θs in Eq. (5�54) is about 1 cycle/day for
all diurnal tides (n1 = m = 1) and about 2 cycles/day for all semi-diurnal tides
(n1 = m = 2). For all long-period tides, n1 = m = 0. Since θs contains the term
n1β1 = mβ1 which contains the term mθM, where θM is mean sidereal time, the
argument θs +mλ in Eq. (5�54) contains the term m(θM + λ).

Cartwright and Tayler (1971) gives values of the amplitude Hs (in meters)
and the Doodson argument number for a large number of tides. This
information for tides of the second degree (n = 2) is given in Tables 4a, b, and c.
These tables apply for long-period tides (m = 0), diurnal tides (m = 1), and semi-
diurnal tides (m = 2), respectively. The same information for tides of the third
degree (n = 3) is given in Tables 5a, b, and c. Table 5d applies for ter-diurnal tides
(m = 3) of the third degree. For each tide, column 1 lists the six integers n1

through n6. Columns 2, 3, and 4 give the amplitude Hs for three different time
periods, which are identified in Table 3 of this reference. We will use the values
from the latest time period (May 23, 1951 to May 23, 1969), which are given in
column 4. Column 5 gives the six integers n1 through n6 coded into the Doodson
argument number. We do not use the last two columns of these tables. After
correcting a small error, the information for the second-degree tides in Tables 4a,
b, and c of Cartwright and Tayler (1971) was recalculated and presented in Tables
1a, b, and c of Cartwright and Edden (1973). The information given for the third-
degree tides in Tables 5a, b, c, and d of Cartwright and Tayler (1971) was
unaffected by the small error. From Cartwright and Tayler (1971), lunar tides
were computed for degree 2 and 3, and solar tides were computed for degree 2
only. From the above-mentioned tables, the amplitude Hs of individual second-
degree tides is up to about 0.63 meters (for the semi-diurnal lunar tide M2,
Doodson argument 255.555). The third-degree tides have amplitudes Hs up to
about 0.008 meters.

5.2.6.4 The Doodson Variables

In Eq. (5�54), θs is the astronomical argument for a particular tide s. The
argument θs is defined by the sequence of six integers n1 through n6 (which are
coded into the Doodson argument number) and is calculated from Eq. (5�60). In
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this equation, β1 through β6 are the Doodson variables. This section defines them
and gives equations for computing them.

From pages 53 and 54 of International Earth Rotation Service (1992), the
six Doodson variables β1 through β6 are functions of the five fundamental
arguments l,   ′l , F, D, and Ω (defined below) of the nutation series and mean
sidereal time θM:

β2 = s = F + Ω = Mean Longitude of the Moon
β3 = h = s − D = Mean Longitude of the Sun
β4 = p = s − l = Longitude of the Moon�s Mean Perigee
β5 =   ′N = − Ω = Negative of the Longitude of the

   Moon�s Mean Ascending Node  (5�63)
β6 = p1 = s − D −   ′l = Longitude of the Sun�s Mean Perigee
β1 = τ = θM + π − s = Mean Lunar Time (Greenwich Hour

   Angle of Mean Moon plus 12 hours)

From p. 32 of International Earth Rotation Service (1992), or p. 98 of Seidelman
(1982), the fundamental arguments of the nutation series are:
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l =  Mean Anomaly of the Moon

= 134°5 ′7 4 ′′6 .733 + 1325r + 198°5 ′2 0 ′′2 .633( ) T + 3 ′′1 .310T 2 + ′′0 .064 T 3

′l = Mean Anomaly of the Sun

= 357°3 ′1 3 ′′9 .804 + 99r + 359°0 ′3 0 ′′1 .224( ) T − ′′0 .577 T 2 − ′′0 .012T 3

F = Mean Argument of Latitude of the Moon
= L − Ω,  where L = Mean Longitude of the Moon and Ω is defined below

= 93°1 ′6 1 ′′8 .877 + 1342r + 82°0 ′1 0 ′′3 .137( ) T − 1 ′′3 .257 T 2 + ′′0 .011T 3

D = Mean Elongation of the Moon from the Sun
= L − Ls ,  where Ls = Mean Longitude of the Sun

= 297°5 ′1 0 ′′1 .307 + 1236r + 307°0 ′6 4 ′′1 .328( ) T − ′′6 .891T 2 + ′′0 .019T 3

Ω = Longitude of the Mean Ascending Node of the Lunar Orbit on the
Ecliptic,  Measured from the Mean Equinox of Date

= 125°0 ′2 4 ′′0 .280 − 5r + 134°0 ′8 1 ′′0 .539( ) T + ′′7 .455T 2 + ′′0 .008T 3

(5�64)

where   1r = 360°= 129600 ′′0  and

    

T =

×

Julian centuries of 36525 days of 86400 s of coordinate time ET
  (in the Solar - System barycentric or local geocentric frame of reference)

  past January 1,  2000,  12 ET (J2000.0;  JED 245,1545.0)

=  
ET

86400 36525

h

(5�65)

where

ET = seconds of coordinate time past J2000.0

Converting Eqs. (5�64) to arcseconds gives
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l = 485,86 ′′6 .733 + 1,717,915,92 ′′2 .633T + 3 ′′1 .310T 2 + ′′0 .064 T 3

′l = 1,287,09 ′′9 .804 + 129,596,58 ′′1 .224 T − ′′0 .577 T 2 − ′′0 .012T 3

F = 335,77 ′′8 .877 + 1,739,527,26 ′′3 .137 T − 1 ′′3 .257 T 2 + ′′0 .011T 3

D = 1,072,26 ′′1 .307 + 1,602,961,60 ′′1 .328T − ′′6 .891T 2 + ′′0 .019T 3

Ω = 450,16 ′′0 .280 − 6,962,89 ′′0 .539T + ′′7 .455T 2 + ′′0 .008T 3

(5�66)

Calculation of the Doodson variable β1 requires mean sidereal time θM.
The ODP code calculates true sidereal time θ, which is θM plus a nutation term,
which is less than 10−4 rad. From Eq. (5�42), the radial solid Earth tide varies
from about +32 cm to −16 cm. If the maximum positive displacement were
calculated from Eqs. (5�32) and (5�54) (instead of Eq. 5�51) using true sidereal
time θ instead of mean sidereal time θM to calculate β1, which is used to calculate
θs from Eq. (5�60), the error would be less than 0.06 mm. However, we only use
the expansion of the tidal potential and the Doodson variables to calculate the
second-order correction to the tidal displacement of the tracking station (Section
5.2.6.5) and the tracking station displacement due to ocean loading (Section 5.2.7).
These corrections are no more than a few centimeters and the error in
computing them from θ  instead of θM is less than 0.002 mm, which is negligible.
Hence, β1 in Eq. (5�63) is calculated from θ instead of θM.

The formulation for calculating sidereal time θ is given in Section 5.3.6.2.
This formulation includes the transformation of the time argument from
coordinate time ET to Universal Time UT1.

Calculation of the six Doodson variables β1 through β6 from Eqs. (5�63)
requires the calculation of l,   ′l , F, D, and Ω from Eqs. (5�66), where T is
computed from the ET value of the epoch using Eq. (5�65). These five angles
must be converted from arcseconds to radians by dividing by
206,264.806,247,096. The ET value of the epoch is also used to calculate true
sidereal time θ, which is used instead of mean sidereal time θM in calculating β1.
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5.2.6.5 Second-Order Correction to the Tidal Displacement of the Tracking

Station

Second-order tidal displacements account for the departure of the
frequency-dependent Love numbers h2 and l2 from the constant values
(Eq. 5�35) used to calculate the first-order tidal displacement from Eq. (5�51).

The tidal displacements in the radial, north, and east directions could be
computed from Eqs. (5�32) to (5�34), where W2/g is replaced by W/g given by
Eq. (5�54). In these equations, h2 and l2 are frequency dependent. That is, they
are different for each term of Eq. (5�54) that they multiply. The second-order
tidal displacements can be computed from Eqs. (5�32) to (5�34) and (5�54) by
replacing h2 and l2 with ∆h2 and ∆l2, which are the departures of h2 and l2 (for a
particular tide or term of Eq. 5�54) from the constant values (Eq. 5�35) used in
computing the first-order tidal displacement from Eq. (5�51).

The number of terms contained in the second-order tidal displacement
depends upon the error criterion used. International Earth Rotation Service
(1992), p. 57, used a cutoff of 5 mm (which I adopt) and obtained one term in the
radial direction and no terms in the north and east directions.

The frequency-dependent values of h2 and l2 are given in Table 5 on p. 699
of Wahr (1981). There are significant variations of h2 and l2 (denoted as h0 and l0
by Wahr) with the frequency of the individual diurnal (n = 2, m = 1) tides. The
values given by Eq. (5�35) apply for all semi-diurnal (n = 2, m = 2) tides. Hence,
there are no second-order corrections for the semi-diurnal tides. Constant values
of h2 and l2 (which differ from those in Eq. 5�35) apply for all long-period (n = 2,
m = 0) tides.

The second-order tidal displacements in the north and east directions are a
maximum of about 1 mm each, which can be ignored. The only tide that
produces a radial second-order displacement greater than 5 mm is the K1 diurnal
tide (Doodson number 165.555). It produces a correction of about 13 mm. A few
other diurnal tides produce second-order radial corrections which vary from a
fraction of a millimeter to 1.8 mm. Their sum is about 4 mm, which is just under
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the criterion and is ignored. A few long-period tides produce a total radial
correction of about 0.4 mm, which is also ignored.

The remainder of this section derives the second-order radial tidal
displacement due to the K1 diurnal tide. From Eq. (5�32), the second-order
correction to the radial tidal displacement is given by:

    
∆ ∆s h

W
gr =





2 km (5�67)

where W/g is the term of Eq. (5�54) for the K1 diurnal (n = 2, m = 1) tide:

    

W
g

H WK K= ( ) +( )1 12
1 φ θ λsin km (5�68)

From Eqs. (5�55) to (5�59) or from Table 2 on p. 52 of Cartwright and Tayler
(1971),

    
W 2

1 φ( ) = − 3
2

5
24 π

sin 2φ (5�69)

For the K1 diurnal tide (Doodson argument number 165.555), n1 = m = 1, n2 = 1,
and n3 = n4 = n5 = n6 = 0. Hence, from Eqs. (5�60) and (5�63),

    θ β β θ π θ πK s s
1 1 2= + = + − + = +M M (5�70)

and

    
sin sin sinθ λ θ π λ θ λK1

+( ) = + +( ) = − +( )M M (5�71)

From Table 5 on p. 699 of Wahr (1981), the value of h2 for the K1 tide is 0.520.
However, p. 57 of International Earth Rotation Service (1992) quotes a value of
0.5203 from Wahr�s theory. Using this value and the value of h2 from Eq. (5�35)
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which is used in computing the first-order tidal displacement from Eq. (5�51)
gives:

    ∆h2 0 5203 0 6090 0 0887= − = −. . . (5�72)

From p. 259 of Cartwright and Edden (1973), the value of the amplitude Hs for
the K1 tide is:

    HK1
0 36878= .  m (5�73)

From Eqs. (5�67) to (5�73), the second-order term of the radial displacement of
the Earth-fixed tracking station due to solid Earth tides is:

    

∆sr = −( )( ) −



 − +( )[ ]

= − ×( ) +( )−

0 0887 0 36878
3
2

5
24

2

1 264 10 25

. . sin sin

. sin sin

 m

 km

M

M

π
φ θ λ

φ θ λ
(5�74)

where φ and λ are the geocentric latitude and longitude of the tracking station,
referred to the true pole, prime meridian, and equator of date. However, since
this term is so small, φ and λ can be evaluated with the input 1903.0 station
coordinates, which are uncorrected for polar motion. Also, as discussed in the
previous section, mean sidereal time θM can be replaced with true sidereal time θ,
with a resulting error of less than 0.002 mm. For a tracking station with a latitude
of   ± 45° , the amplitude of ∆sr is 1.3 cm. The second form of Eq. (5�74) is given on
p. 58 of International Earth Rotation Service (1992).

In Eq. (5�51) for the first-order displacement of the tracking station due to
solid Earth tides, the radial, north, and east displacements were computed from
phase-shifted values of the unit vector     �r  to the tracking station and the
corresponding north N and east E vectors. This is equivalent to calculating these
components of the displacement with the longitude λ of the tracking station
reduced by the phase shift ψ (see Eqs. 5�47 and 5�48). Although this phase shift
was not considered in the expansion of the tidal potential, it can be added by
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replacing λ with (λ − ψ) in Eq. (5�54). It follows that this same substitution should
be made in Eqs. (5�68), (5�71), and (5�74).

The second-order term of the displacement of the tracking station due to
solid Earth tides is obtained by substituting ∆sr given by Eq. (5�74) (with λ
replaced by λ − ψ) and     ∆sφ = ∆sλ = 0 into Eq. (5�36):

      ∆ ∆r rb = sr � km (5�75)

where     �r  is obtained by substituting the first five terms of Eq. (5�1) into
Eq. (5�25).

5.2.6.6 Permanent Displacement of the Tracking Station Due to Solid Earth

Tides

This section develops the equations for the constant part of the
displacement of the tracking station due to solid Earth tides. This permanent tidal
displacement is included in the calculated first-order tidal displacement. If the
permanent tidal displacement was subtracted from the sum of the first-order and
second-order tidal displacements, then the estimated coordinates of the tracking
station would include the permanent tidal displacement. However, this
calculation is not performed in any of the major orbit determination programs
that calculate solid Earth tides. Hence, to be consistent, we will not subtract the
permanent tidal displacement from the sum of the first-order and second-order
tidal displacements.

The remainder of this section derives the equations for calculating the
permanent displacement of the tracking station due to solid Earth tides.
However, these equations will not be evaluated. This are given for information
only.

The permanent tidal displacement of the tracking station is calculated
from Eqs. (5�32) to (5�34), where W2/g is the zero-frequency term of Eq. (5�54).
From Cartwright and Edden (1973), the zero-frequency tide has the Doodson
argument number 055.555. This means that n1 = m = 0 and n2 through n6 are
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zero. Hence, from Eq. (5�60), the astronomical argument θs is zero. Since n = 2
and m = 0 for the zero-frequency tide,

    

cos
sin

cosθ λs m+( ) = ( ) =0 1 (5�76)

and the zero-frequency term of Eq. (5�54) is:

    

W
g

H Ws= ( )2
0 φ m (5�77)

From Cartwright and Edden (1973), the amplitude Hs for the zero-frequency tide
is:

    Hs = − 0 31455.  m (5�78)

From Eqs. (5�55) to (5�59), or from Cartwright and Tayler (1971), p. 52,

    
W2

0 25
4

3
2

1
2

φ
π

φ( ) = −



sin (5�79)

and

    

∂W 2
0 φ( )

∂φ
= 3

2
5

4π
sin 2φ (5�80)

From Wahr (1981), p. 699, Table 5, the values of the Love numbers h2 and
l2 that apply for any long-period tide (n = 2, m = 0) are:

    

h

l
2

2

0 606
0 0840

=
=

.

.
(5�81)

The actual permanent tide should be computed from these values of h2 and l2.
However, if the permanent tide is calculated for the purpose of subtracting it
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from the first-order tidal displacement calculated from Eq. (5�51) (in order to
eliminate the permanent tide that is included in the first-order tidal
displacement), then the permanent tide should be computed from h2 and l2 given
by Eq. (5�35), since these values were used in Eq. (5�51).

The radial component of the permanent tide at the tracking station is
obtained by substituting Eqs. (5�77) to (5�79) into Eq. (5�32):

    

s h

h

r = −( ) −





= − ×( ) −





−

2
2

2
3 2

0 31455
5

4
3
2

1
2

0 19841 10
3
2

1
2

. sin

. sin

 m

 km

π
φ

φ
(5�82)

Substituting the partial derivative of Eq. (5�77) with respect to φ, Eq. (5�78), and
Eq. (5�80) into Eq. (5�33) gives the north component of the permanent tide at the
tracking station:

    

s l

l

φ π
φ

φ

= −( ) 






= − ×( )−

2

2
3

0 31455
3
2

5
4

2

0 29762 10 2

. sin

. sin

 m

 km

(5�83)

Using the values of h2 and l2 from Eq. (5�35), the coefficients in Eqs. (5�82) and
(5�83), which multiply the functions of φ are −0.12083 m and −0.02536 m,
respectively. Eqs. (5�82) and (5�83) with these numerical coefficients, are Eqs. (8a)
and (8b) on p. 58 of International Earth Rotation Service (1992). Since Eqs. (5�77)
and (5�79) are not a function of the longitude λ of the tracking station, the east
component of the permanent tide at the tracking station, computed from
Eq. (5�34), is zero.

From Eq. (5�36), with the east component sλ set to zero, the permanent
displacement of the tracking station due to solid Earth tides is given by:

      ∆r r Nb = +s sr � φ km (5�84)
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where sr and sφ are given by Eqs. (5�82) and (5�83). The unit vector     �r  to the
tracking station is obtained by substituting the first five terms of Eq. (5�1) into
Eq. (5�25). The north vector N is calculated from Eq. (5�37). The geocentric
latitude φ and longitude λ of the tracking station used to evaluate sr, sφ, and N

can be the input 1903.0 values, which are uncorrected for polar motion. The error
due to ignoring polar motion in these calculations is less than 0.001 mm.

5.2.7 OCEAN LOADING

The seventh term of Eq. (5�1) is the displacement ∆rOL of a fixed tracking
station on Earth due to ocean loading. This is a centimeter-level periodic
displacement due to the periodic ocean tides. It is calculated from the model of
Scherneck (1991). The displacements in the geocentric radial, north, and east
directions (on a spherical Earth) are given by:

    
s Ar s

r
s s s

r

s

= + + −( )−

=
∑10 3

1

11

cos θ χ φ km (5�85)

    
s As s s s

s
φ θ χ φ= − + −( )−

=
∑10 3

1

11
S Scos km (5�86)

    
s As s s s

s
λ θ χ φ= − + −( )−

=
∑10 3

1

11
W Wcos km (5�87)

where     A A As
r

s s,  ,  and S W  are the amplitudes (in meters) of the radial, south, and
west displacements for tide s. The astronomical argument θs for tide s is
calculated from the Doodson argument number, Eq. (5�60), and related
equations as described in Sections 5.2.6.3 and 5.2.6.4. The quantity χs is the
additional Schwiderski phase angle, which will be discussed below. The angles

    φ φ φs
r

s s,   S W,  (which are given in degrees) are the Greenwich phase lags for the
radial, south, and west displacements for tide s. The summations are over eleven
tide components: the M2, S2, N2, and K2 semi-diurnal tides; the K1, O1, P1, and Q1

diurnal tides; and the Mf, Mm, and Ssa long-period tides. The Doodson argument
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number and the corresponding values of the integers n1 through n6 for each of
these tides are shown in Table 5-1.

Table 5�1

Doodson Argument Numbers

Tide

Doodson
Argument
Number n1 n2 n3 n4 n5 n6

M2

S2

N2

K2

255.555
273.555
245.655
275.555

2
2
2
2

  0
  2
−1
  2

  0
−2
  0
  0

  0
  0
  1
  0

0
0
0
0

0
0
0
0

K1

O1

P1

Q1

165.555
145.555
163.555
135.655

1
1
1
1

  1
−1
  1
−2

  0
  0
−2
  0

  0
  0
  0
  1

0
0
0
0

0
0
0
0

Mf

Mm

Ssa

075.555
065.455
057.555

0
0
0

  2
  1
  0

  0
  0
  2

  0
−1
  0

0
0
0

0
0
0

From International Earth Rotation Service (1992), p. 63, Table 8.1, the additional
Schwiderski phase angle χs is a function of the tide period band (i.e., semi-
diurnal, diurnal, or long-period) and the sign of the amplitude Hs of the tide (see
Eq. 5�54):

    

χ
π
π

s

s

s

s

s

H M S N K

H M M S

H K

H O P Q

=

−



















0
0

2
2

2 2 2 2

1

1 1 1

   

Semi - Diurnal Tides with  >  0 (  ,  ,  )
Long - Period Tides with  <  0 ( ,  ,  
Diurnal Tides with  >  0 ( )
Diurnal Tides with  <  0 ( ,  ,  )

f m sa

,
)

(5�88)
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Calculation of the displacement of a tracking station due to ocean loading
requires the three amplitudes     A A As

r
s s,  ,  and S W  and the three phases

    φ φ φs
r

s s,   S W,  for each of the eleven tide components (a total of 66 numbers)
which apply for that tracking station location. Pages 70�109 of International
Earth Rotation Service (1992), contain tables of these 66 ocean-loading
coefficients which apply for a large number of locations on Earth. We use the
table labelled MOJAVE12 for each tracking station at the Goldstone complex, the
table labelled TIDBIN64 for each tracking station at the Canberra, Australia
complex, and the table labelled MADRID64 for each tracking station at the
Madrid, Spain complex.

The Earth-fixed displacement vector ∆rOL of a fixed tracking station on
Earth due to ocean loading is calculated by substituting the geocentric radial,
north, and east displacements calculated from Eqs. (5�85) to (5�87) into
Eq. (5�36). The unit vector     �r  to the tracking station is calculated by substituting
the first five terms of Eq. (5�1) into Eq. (5�25). The north N and east E vectors can
be calculated from Eqs. (5�37) and (5�38) using input 1903.0 station coordinates,
which are uncorrected for polar motion.

5.2.8 POLE TIDE

The eighth term of Eq. (5�1) is the displacement ∆rPT of a fixed tracking
station on Earth due to the so-called pole tide. This is a solid Earth tide caused by
polar motion. The equations for calculating the pole tide are derived in Section
5.2.8.1. It will be seen that the components of the pole tide are proportional to

    X X Y Y− − and , where X and Y are the Earth-fixed coordinates of the true pole
of date relative to the mean pole of 1903.0. The quantities     X Y and  are average
values of X and Y over some modern time span. Section 5.2.8.2 derives equations
for constant values of the Earth�s normalized harmonic coefficients     C S21 21 and 
as functions of     X Y and . These equations are inverted to give the required
values of     X Y and  as functions of     C S21 21 and . These are not the estimated
values of the Earth�s harmonic coefficients. They are constant values obtained
from the GIN file, which are only used in the pole tide model in program Regres.
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The deformation of the Earth due to the pole tide produces periodic
changes in the Earth�s normalized harmonic coefficients     C S21 21 and . The
equations for calculating these periodic terms are derived in Section 5.2.8.3. The
periodic variations in     C S21 21 and  are added to the estimated values of

    C S21 21 and  in program PV. Calculation of the periodic variations requires values
of     X Y and , which are calculated from the equations of Section 5.2.8.2 as
functions of the estimated harmonic coefficients     C S21 21 and  instead of the
constant values used in program Regres.

5.2.8.1 Derivation of Equations for the Pole Tide

This section derives the equations for calculating the displacement of the
tracking station due to the deformation of the Earth caused by polar motion. The
displacement of a tracking station due to this effect is less than 2 cm. The
derivation given here was taken from Wahr (1985).

From p. 4, Eq. (5) of Melbourne et al. (1968), the geoid (mean sea level) is
an equipotential surface, where the potential is the sum of the gravitational
potential and the centrifugal potential. Polar motion changes the centrifugal
potential and thus the geoid. The Earth-fixed rectangular coordinate system used
to derive the pole tide is aligned with the mean pole, prime meridian, and
equator of 1903.0. From Eq. (1) of Wahr (1985), the instantaneous angular
rotation vector of the Earth, with rectangular components in the Earth-fixed
1903.0 coordinate system, is given by:

    

Ω = −
















ωE

X

Y

1
rad/s (5�89)

where terms quadratic in X and Y and variations in the Earth�s rotation rate are
ignored. The mean inertial rotation rate of the Earth (ωE) is given in Section
4.3.1.2. The quantities X and Y are the angular coordinates (in radians) of the
Earth�s true pole of date (instantaneous axis of rotation) relative to the mean pole
of 1903.0. The angle X is measured south along the   0° meridian of 1903.0, and Y
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is measured south along the   90° W meridian of 1903.0. These angles are
interpolated from the EOP file or the TP array as described in Section 5.2.5.1.

From Eq. (2) of Wahr (1985), the centrifugal potential Uc at the location of
the tracking station is given by:

      
U rc = − ⋅( )[ ]1

2
2 2 2Ω Ωr km2/s2 (5�90)

where r is the geocentric position vector of the tracking station with rectangular
components along the Earth-fixed 1903.0 coordinate system:

      

r =
















=
















x

y

z

r

r

r

cos cos
cos sin

sin

φ λ
φ λ

φ
km (5�91)

where r, φ, and λ are the geocentric radius, latitude, and longitude of the tracking
station in the Earth-fixed 1903.0 coordinate system. Substituting Eq. (5�89) and
the first form of Eq. (5�91) into Eq. (5�90) gives a number of terms of Uc. The
first-order term is the nominal centrifugal potential, which produces the
ellipticity of the Earth. All terms quadratic in X and Y are ignored. The sum V of
the terms linear in X and Y is the perturbation to the centrifugal potential due to
polar motion:

    V z Xx Yy= − −( )ωE
2 km2/s2 (5�92)

Substituting x, y, and z from Eq. (5�91) as functions of r, φ, and λ gives:

    
V r X Y= − −( )1

2
22 2ω φ λ λE sin cos sin km2/s2 (5�93)

which is equivalent to Eq. (3) of Wahr (1985). The X and Y coordinates of the true
pole of date can be expressed as sums of the mean coordinates     X Y and  (which
are constant in program Regres) and the periodic variations of the coordinates

    X X Y Y− − and . The change V in the centrifugal potential due to the
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displacement of the mean pole     X Y,( )  from the 1903.0 pole produces constant
changes in the coordinates of the tracking stations, which can be absorbed into
the input 1903.0 coordinates. The displacement of the tracking station due to the
displacement of the true pole of date (X,Y) from the mean pole     X Y,( )  is
calculated from the potential:

    
V r X X Y Y= − −( ) − −( )[ ]1

2
22 2ω φ λ λE sin cos sin km2/s2 (5�94)

The displacements of the tracking station in the radial, north, and east
directions due to the change V in the centrifugal potential due to the periodic
terms of polar motion are obtained by substituting V given by Eq. (5�94) for W2

in Eqs. (5�32) to (5�34):

    
s

h r
g

X X Y Yr = − −( ) − −( )[ ]2
2 2

2
2

ω
φ λ λE sin cos sin km (5�95)

    
s l

r
g

X X Y Yφ
ω

φ λ λ= − −( ) − −( )[ ]2

2 2
2E cos cos sin km (5�96)

    
s l

r
g

X X Y Yλ
ω

φ λ λ= + −( ) + −( )[ ]2

2 2
E sin sin cos km (5�97)

where g is the acceleration of gravity at the tracking station. An approximate
value which can be used at all tracking stations will be given below. The Love
numbers h2 and l2 should be the long-period values given in Eq. (5�81).
However, the only available values are the input semi-diurnal values given by
Eq. (5�35). Use of these values in Eqs. (5�95) to (5�97) produces errors of 0.1 mm
or less. The displacement ∆rPT of the tracking station due to the pole tide is
obtained by substituting sr, sφ, and sλ calculated from Eqs. (5�95) to (5�97) into
Eq. (5�36). In this equation,     �r  is obtained by substituting the first five terms of
Eq. (5�1) into Eq. (5�25). The north N and east E vectors are calculated from
Eqs. (5�37) and (5�38). The spherical coordinates r, φ, and λ of the tracking station
used in Eqs. (5�95) to (5�97), Eq. (5�37), and Eq. (5�38) can be the input 1903.0
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coordinates, uncorrected for polar motion. The pole tide displacement should be
referred to the true pole, prime meridian, and equator of date. However, most
of the calculated quantities are referred to the mean pole, prime meridian, and
equator of 1903.0. The resulting errors are negligible because the displacement is
less than 2 cm.

Page 700 of Explanatory Supplement (1992) gives an expression for the
acceleration of gravity g as a function of the latitude φ. This expression is an even
function of φ. The three DSN complexes have absolute latitudes of 35°, 35°, and
40°. There are a number of other stations which have smaller absolute latitudes.
The acceleration of gravity g is approximately 9.78 m/s2 at φ = 0°, 9.80 m/s2 at
φ = 38°, 9.82 m/s2 at φ = 61°, and 9.832 m/s2 at φ = 90°. For the pole tide model,
we will set g equal to the constant value of 9.80 m/s2:

    g = 9.80 × 10−3  km / s2 (5�98)

For a tracking station at any latitude, the maximum error in g given by Eq. (5�98)
is 0.33%. The corresponding error in a 2 cm pole tide would be less than 0.1 mm.

5.2.8.2 Calculation of the Mean Position     X Y,( )  of the True Pole     X ,Y( )

This section develops equations that can be used to calculate the mean
values     X Y and  of the X and Y coordinates of the true pole of date. They are
used in Eqs. (5�95) to (5�97) to calculate the radial, north, and east displacements
of the tracking station due to the pole tide. They are also required in the
equations of the following section for the periodic variations in the Earth�s
normalized harmonic coefficients     C S21 21 and . These periodic terms are due to
the deformation of the Earth caused by the pole tide.

In the Earth-fixed coordinate system aligned with the mean pole, prime
meridian, and equator of 1903.0, the current mean pole is not aligned with the z
axis but is located   X  radians south along the Greenwich meridian and   Y  radians
south along the 90° W meridian. From p. 42 of International Earth Rotation
Service (1992), it is assumed that the Earth�s mean figure axis has the same
orientation as the mean rotation pole, when averaged over the same long time
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period. Hence, the Earth-fixed coordinates of the mean figure axis are     X Y,( ) . At
a fixed point in the 1903.0 Earth-fixed coordinate system with geocentric radius r,
latitude φ, and east longitude λ, the displacement     X Y,( )  of the current mean
pole and figure axis from the 1903.0 mean pole changes the latitude by (see
Moyer (1971), Eq. 220):

    ∆φ λ λ= −X Ycos sin rad (5�99)

In calculating the change in the Earth�s gravitational potential due to the change
∆φ in the latitude, the gravitational potential U can be approximated with the
potential due to the second zonal harmonic J2. From Moyer (1971), Eqs. (158) and
(175) to (177), it is given by:

    
U J

r
J

a
r2 2

2
23

2
1
2

( ) = − 





−





µ
φE e sin km2/s2 (5�100)

The change in this potential due to moving the mean figure axis from the z axis
to the point     X Y,( )  is obtained by differentiating Eq. (5�100) with respect to φ
and then multiplying the result by ∆φ given by Eq. (5�99):

    
∆U

r
J

a
r

X Y= − 









 −( )µ

φ λ λE e
2

2 3
2

2sin cos sin km2/s2 (5�101)

This potential has the same form as the potential due to the harmonic coefficients
C21 and S21 (see Moyer (1971), Eqs. 159 and 155):

    
U

r
a
r

C S= 









 +( )µ

φ λ λE e
2

21 21
3
2

2sin cos sin km2/s2 (5�102)

Equating (5�101) and (5�102) gives the following approximate additions to the
Earth�s harmonic coefficients due to the offset     X Y,( )  of the current mean pole
and figure axis from the 1903.0 mean pole:
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C J X

S J Y
21 2

21 2

= −

= +
(5�103)

From p. 54 of International Earth Rotation Service (1992), the unnormalized
harmonic coefficients in (5�103) are related to the corresponding normalized
coefficients by:

    

C N C

S N S

J C N C N J

21 21 21

21 21 21

2 20 20 20 20 2

=

=

= − = − =

(5�104)

where

    
N

n m n

n mnm
m=

−( ) +( ) −( )
+( )











!

!

2 1 2 0

1
2δ

(5�105)

Evaluating N21 and N20 gives:

    

N

N

21

20

5
3

5

=

=
(5�106)

Substituting (5�104) and (5�106) into (5�103) gives:

    

C J X

S J Y
21 2

21 2

3

3

= −

= +
(5�107)

Inverting these equations gives the required expressions for calculating the mean
values     X Y,( )  of the X and Y coordinates of the true pole of date:
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X
C

J

Y
S

J

= −

= +

21

2

21

2

3

3

(5�108)

From p. 43 of International Earth Rotation Service (1992), the recommended
values of     C S21 21 and  are:

    

C

S

21
9

21
9

0 17 10

1 19 10

= − ×

= + ×

−

−

.

.
(5�109)

These values are GIN file inputs, which are used in program Regres only to
calculate     X Y and  from Eqs. (5�108). Given the value of J2 from
Section 4.3.1.2, the required value of     J2 can be calculated from Eqs. (5�104) and
(5�106). The result is     J2

44 8417 10= × −. .

5.2.8.3 Periodic Variations in       C S21 21  and

The change V in the centrifugal potential at the location of a tracking
station on Earth due to the periodic part of the polar motion is given by
Eq. (5�94). The displacement of the Earth at this point due to V is given by
Eqs. (5�95) to (5�97). The induced gravitational potential at the tracking station
due to this displacement is the potential V multiplied by the second-degree Love
number k2. The induced potential k2V has very nearly the same form on the
Earth�s surface as the gravitational potential U due to the Earth�s harmonic
coefficients C21 and S21 (Eq. 5�102). Equating k2V to U at the Earth�s surface and
converting from unnormalized to normalized harmonic coefficients using Eqs.
(5�104) and (5�106) gives the following equations for the periodic variations in

    C S21 21 and :

    

δ

δ

C K X X

S K Y Y

21

21

= − −( )
= + −( )

(5�110)

where
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K

r k

a

a k
= ≈

ω
µ

ω
µ

E

E e

E e

E

2 5
2

2

2 3
2

15 15
(5�111)

For an accuracy of 9 x 10−12 in the Earth�s normalized harmonic coefficients, the
variation in K given by the first form of Eq. (5�111) due to the variation of the
geocentric radius r with latitude can be ignored and K can be computed from the
second form of (5�111). Substituting numerical values obtained from Section
4.3.1.2 gives:

    
K k= ×( )−8 9373 10 4

2. (5�112)

which should be evaluated with the input value of the second-degree Love
number k2. Using the nominal value of 0.30 for k2, K = 2.68 x 10−4.

Eqs. (5�110) and (5�112) should be used in program PV to calculate
periodic corrections to the input or estimated values of the Earth�s normalized
harmonic coefficients     C S21 21 and . The required values for     X Y and  can be
computed from the input or estimated values of     C S J21 21 2,  ,  and  using
Eqs. (5�108). In program PV, these harmonic coefficients can be linear functions
of time.

5.3 EARTH-FIXED TO SPACE-FIXED TRANSFORMATION
MATRIX TE AND ITS TIME DERIVATIVES

This section gives the formulation for the Earth-fixed to space-fixed
transformation matrix TE and its first and second time derivatives with respect to
coordinate time ET. Subsection 5.3.1 gives the high-level equations for TE, its
time derivatives, and partial derivatives with respect to solve-for parameters.
Calculation of the rotation matrix TE requires the nutation angles and their time
derivatives, Universal Time UT1, and (in program PV) the X and Y coordinates
of the pole. The procedures for obtaining these quantities are described in
Subsection 5.3.2. If the input values of UT1 are regularized (i.e., UT1R), then
periodic variations (∆UT1) in UT1 must be added to UT1R to convert it to UT1.
The formulation for calculating ∆UT1 is given in Subsection 5.3.3. Subsections
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5.3.4 through 5.3.6 give the formulations for calculating the various sub-matrices
of TE, their time derivatives, and partial derivatives with respect to solve-for
parameters. The final expressions for the partial derivatives of TE and the
geocentric space-fixed position vector of the tracking station with respect to
solve-for parameters will be given in Section 5.5.

5.3.1 HIGH-LEVEL EQUATIONS FOR TE, ITS TIME DERIVATIVES, AND

PARTIAL DERIVATIVES

The Earth-fixed to space-fixed transformation matrix TE is used to
transform the geocentric Earth-fixed position vector rb of a tracking station to
the corresponding space-fixed position vector     rTS

E  of the tracking station (TS)
relative to the Earth (E):

      r rTS
E

E b= T km (5�113)

The geocentric Earth-fixed position vector rb of the tracking station has
rectangular components referred to the true pole, prime meridian, and equator
of date. The geocentric space-fixed position vector     rTS

E  of the tracking station has
rectangular components that are represented in the celestial reference frame of
the particular planetary ephemeris used by the ODP (see Section 3.1.1). Each of
the various celestial reference frames is a rectangular coordinate system
nominally aligned with the mean Earth equator and equinox of J2000 (see Section
2.1). The celestial reference frame of the planetary ephemeris can have a slightly
different orientation for each planetary ephemeris. The celestial reference frame
maintained by the International Earth Rotation Service (IERS) is called the radio
frame. The right ascensions and declinations of quasars are referred to the radio
frame. The transformation matrix TE rotates from the Earth-fixed coordinate
system to the space-fixed radio frame and then to the space-fixed planetary
ephemeris frame (which for some ephemerides is the radio frame).

From Eq. (5�113), the transformation from space-fixed to Earth-fixed
coordinates of a tracking station is given by:
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      r rb E
T

TS
E= T km (5�114)

where the superscript T indicates the transpose of the matrix.

The Earth-fixed to space-fixed transformation matrix TE used in program
Regres of the ODP is the transpose of the product of six coordinate system
rotation matrices:

    
T BN A R R RE x y z

T
= ( ) (5�115)

The transpose of this matrix is the space-fixed to Earth-fixed transformation
matrix     TE

T :

    
T BN A R R RE

T
x y z= ( ) (5�116)

The definitions of the rotation matrices in Eqs. (5�115) and (5�116) are
easier to comprehend if we consider the rotation (5�116) from space-fixed to
Earth-fixed coordinates. Starting from the space-fixed coordinate system of the
planetary ephemeris, the rotation matrix Rz is a rotation of this coordinate
system about its z axis through the small angle rz:

    

R

r r

r rz

z z

z z

0
0

0 0 1
= −

















cos sin
sin cos (5�117)

Then, the resulting coordinate system is rotated about its y axis through the
small angle ry:

    

R

r r

r r
y

y y

y y

=
−















cos sin

sin cos

0
0 1 0

0
(5�118)
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The resulting coordinate system is rotated about its x axis through the small
angle rx:

    

R r r

r r
x x x

x x

=
−

















1 0 0
0
0

cos sin
sin cos

(5�119)

The rotation RxRyRz rotates space-fixed coordinates from the planetary
ephemeris frame to the radio frame. The constant rotation angles rz, ry, and rx

can be different for each planetary ephemeris. In order to estimate values of
these angles or to consider the effects of their uncertainties on the estimates of
other parameters, we will need partial derivatives of observed quantities with
respect to these angles. The derivatives of Rz, Ry, and Rx with respect to rz, ry,
and rx, respectively, are given by:

    

dR
dr

r r

r rz

z

z z

z z=
−
− −

















sin cos
cos sin

0
0

0 0 0
(5�120)
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0 0 0
0
0

sin cos
cos sin

(5�122)

In Eq. (5�116), the precession matrix A rotates from coordinates referred to the
mean Earth equator and equinox of J2000 (specifically, the radio frame) to
coordinates referred to the mean Earth equator and equinox of date. The
nutation matrix N rotates from coordinates referred to the mean Earth equator
and equinox of date to coordinates referred to the true Earth equator and
equinox of date. The matrix B rotates from space-fixed coordinates referred to
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the true Earth equator and equinox of date to Earth-fixed coordinates referred to
the true pole, prime meridian, and equator of date.

The Earth-fixed to space-fixed transformation matrix     TEPV
 used in

program PV rotates from Earth-fixed rectangular coordinates referred to the
mean pole, prime meridian, and equator of 1903.0 to space-fixed rectangular
coordinates of the planetary ephemeris frame. It is obtained from the rotation
matrix TE used in program Regres by adding an additional rotation matrix:

    
T PBN A R R RE x y z

T

PV
= ( ) (5�123)

    
T PBN A R R RE

T
x y zPV

= ( ) (5�124)

The polar motion rotation matrix P rotates from Earth-fixed coordinates referred
to the true pole, prime meridian, and equator of date to Earth-fixed coordinates
referred to the mean pole, prime meridian, and equator of 1903.0. From
Eq. (5�15), the polar motion rotation matrix P is defined to be:

    P R Y R XT
x y= ( ) ( ) (5�125)

where X and Y are the angular coordinates of the true pole of date relative to the
mean pole of 1903.0, and the two rotation matrices are defined by Eqs. (5�16)
and (5�17). Eq. (5�125) is evaluated using the first-order approximations:
cos X = cos Y = 1, sin X = X, and sin Y = Y. In the product of the two rotation
matrices, the second-order term XY is ignored. The resulting expression for the
polar motion rotation matrix P is given by:

    

P
X
Y

X Y
= −

−















1 0
0 1

1

(5�126)

The derivative of P with respect to coordinate time ET is given by:
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ú
ú
ú

ú ú
P

X

Y

X Y

= −
−

















0 0
0 0

0
(5�127)

where the dots denote time derivatives.

From Eq. (5�115), the derivative of TE with respect to coordinate time ET
is given by:

    
ú ú ú úT BN A BN A BN A R R RE x y z

T
= + +( )[ ] rad/s (5�128)

The second time derivative of TE can be evaluated from the approximation:

    
úú úúT BN A R R RE x y z

T
= ( ) rad/s2 (5�129)

The formulation for calculating the rotation matrix B and its time derivatives will
be given in Subsection 5.3.6. That section will give a simple algorithm for
evaluating     

úúTE .

The modified nutation-precession matrix   N A( )′ , which is a sub-matrix of
Eq. (5�116), is used throughout program Regres:

    N A N A R R R( )′ = x y z (5�130)

Its time derivative is given by:

    
N A N A N A R R R( )′





⋅
= +( )ú ú

x y z rad/s (5�131)

The partial derivatives of TE with respect to the so-called frame-tie
rotation angles rz, ry, and rx are given by:
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∂
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T
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(5�134)

which use Eqs. (5�120) to (5�122).

From Eqs. (5�115) and (5�130), the partial derivative of TE with respect to
Universal Time UT1 is given by:

    

∂
∂

∂
∂

T B
N AE

T

UT1 UT1
= ( )′







 rad/s (5�135)

The partial derivative of the rotation matrix B with respect to UT1 will be given
in Subsection 5.3.6. Eq. (5�135) will be used in Section 5.5 to calculate the partial
derivative of the space-fixed position vector of the tracking station with respect
to UT1.

5.3.2 OBTAINING NUTATION ANGLES, UNIVERSAL TIME UT1, AND

COORDINATES OF THE POLE

The time argument for calculating the Earth-fixed to space-fixed
transformation matrix TE is coordinate time ET of the Solar-System barycentric
or local geocentric space-time frame of reference. In addition to the time
argument ET, calculation of the rotation matrix TE also requires the nutation
angles and their time derivatives, Universal Time UT1, and (in program PV) the
X and Y coordinates of the pole. This section explains how these additional
quantities are obtained.
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1. Calculation of several of the auxiliary quantities requires that the
time argument ET be transformed to Coordinated Universal Time
UTC, which is the argument for the TP array or the EOP file (see
section 2.4). This time transformation can be performed using the
complete expression for the time difference ET − TAI in the Solar-
System barycentric frame or an approximate expression. The
expression used will be specified in each application below. In the
Solar-System barycentric frame of reference, the complete
expression for ET − TAI at a tracking station on Earth is given by Eq.
(2�23). However, the geocentric space-fixed position vector of the
tracking station     rA

E  can be evaluated with the approximate algorithm
given in Section 5.3.6.3. The approximate expression for ET − TAI at a
tracking station on Earth in the Solar-System barycentric frame of
reference is given by Eqs. (2�26) to (2�28). In the local geocentric
space-time frame of reference, ET − TAI at a tracking station on Earth
is given by Eq. (2�30). Subtract ET − TAI from the argument ET to
give TAI. Use it as the argument to interpolate the TP array or the
EOP file for TAI − UTC and subtract it from TAI to give the first
value of UTC. Use it as the argument to re-interpolate the TP array
or the EOP file for TAI − UTC and subtract it from TAI to give the
final value of UTC. At the time of a leap second, the two values of
UTC may differ by exactly one second.

2. Using ET as the argument, obtain the nutation in longitude (∆ψ) and
the nutation in obliquity (∆ε) in radians and their time derivatives in
radians per second:

  ∆ ∆ ∆ ∆ψ ε ψ ε,  ,  ,  and ( )⋅ ( )⋅ (5�136)

They can be interpolated from the planetary ephemeris, or they can
be evaluated directly from the theory of nutation in program GIN.
We currently use the 1980 IAU Theory of Nutation, which is given in
Seidelmann (1982).



POSITION  VECTOR  OF  TRACKING  STATION

5�53

3. Transform the argument ET to UTC using the approximate
expression for ET − TAI in the Solar-System barycentric frame. Using
UTC as the argument, interpolate the EOP file for the corrections to
the nutation angles and their time derivatives:

  δψ δε δψ δε,  ,  ,  and ( )⋅ ( )⋅ (5�137)

Add the corrections (5�137) to the values (5�136) obtained from the
1980 IAU Theory of Nutation (Seidelmann 1982).

4. In program PV, transform the argument ET to UTC using the
approximate expression for ET − TAI in the Solar-System barycentric
frame. Using UTC as the argument, interpolate the EOP file or the TP
array for the X and Y coordinates of the true pole of date relative to
the mean pole of 1903.0 and their time derivatives     ú úX Y and .

5. In program Regres, transform the argument ET to UTC using the
complete expression for ET − TAI in the Solar-System barycentric
frame, as described above in item 1. In program PV, use the
approximate expression for ET − TAI in the Solar-System barycentric
frame. Using UTC as the argument, interpolate the TP array or the
EOP file for TAI − UT1 and its time derivative:

  TAI UT1,  and TAI UT1  − −( )⋅ (5�138)

Subtract TAI − UT1 from TAI to give Universal Time UT1. This will
be Universal Time UT1 or Regularized Universal Time UT1R. If it is
the latter, then the periodic terms (∆UT1) of UT1 must be calculated
from the algorithm given in Section 5.3.3 and added to UT1R to give
UT1. In either case, the value of UT1 will be used in Section 5.3.6 to
calculate sidereal time θ and the rotation matrix B. The time
derivative   TAI UT1−( )⋅ will be used in Section 5.3.6 to calculate   úθ , the
time derivative of θ with respect to coordinate time ET.
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5.3.3 ALGORITHM FOR PERIODIC TERMS OF UT1

5.3.3.1 Introduction

Periodic variations in Universal Time UT1 are derived by Yoder et al.

(1981). There are 41 short-period terms with periods between 5 and 35 days and
21 long-period terms with periods between 91 and 6791 days. The periodic
variations in UT1 are caused by long-period solid Earth tides (having periods
greater than those of the various semi-diurnal and diurnal tides) that produce
periodic variations in the Earth�s polar moment of inertia C and hence the
angular rotation rate of the Earth.

The time difference TAI − UT1 is obtained by interpolating the TP array or
the EOP file. Subtracting TAI − UT1 from TAI gives Universal Time UT1. If it is
Regularized Universal Time (UT1R), the sum ∆UT1 of the 41 short-period terms
of UT1 was subtracted from the observed values of UT1 before the data was
smoothed. For this case, the sum ∆UT1 of the 41 short-period terms of UT1 must
be computed from the formulation given in Subsection 5.3.3.2 and added to
UT1R to give UT1. If Universal Time obtained from the TP array or the EOP file
is not regularized, then no correction is necessary.

Table 5�2 (which will be described in Subsection 5.3.3.2) lists the 41 short-
period terms of UT1. The largest amplitude of a single term is about 0.8 ms,
which can affect the space-fixed position vector of a tracking station on Earth by
about 0.4 m. The maximum possible value of ∆UT1 is 2.72 ms, which can affect
the space-fixed position vector of a tracking station by about 1.3 m. These
indirect effects of solid Earth tides are the same order of magnitude as the direct
effects. From Eq. (5�42), the radial solid Earth tide varies from about +32 cm to
−16 cm.

From Yoder et al. (1981), short-period, semi-diurnal, and diurnal ocean
tides can cause changes in C which produce 0.02 to 0.07 ms semi-diurnal and
diurnal UT1 variations. The error in the space-fixed position vector of a tracking
station due to these neglected terms of UT1 is about 1 tο 3 cm. It will be seen in
Subsection 5.3.3.2 that the computed value of ∆UT1 is proportional to the
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coefficient k/C whose estimated value is 0.94 ±  0.04. The 4% uncertainty in this
coefficient can produce errors in the space-fixed position vector of a tracking
station of up to 2 cm due to a single term of ∆UT1 and up to 5 cm due to all of the
terms.

5.3.3.2 Algorithm for Computing the Short-Period Terms of UT1

Since angular momentum is conserved, the change in Universal Time UT1
due to a change δ C in the Earth�s polar moment of inertia C is given by the
second form of Eq. (2) of Yoder et al. (1981). The change δ C (normalized) due to
long-period lunar or solar solid Earth tides is given by Eq. (3). This equation is
consistent with Eq. (2.154) of Melchior (1966) for δ C/C. Eq. (3) of Yoder et al.

(1981) gives δ C as a function of the distance to and the declination of the Moon
or the Sun. Eq. (3) is converted to a function of the ecliptic longitude and latitude
of the tide-raising body (the Moon or the Sun) and the obliquity of the ecliptic.
They list a reference that presumably shows how this equation is expanded. The
final expression for the sum ∆UT1 of the 41 short-period terms of UT1 has the
form:

    
∆ ΩΩUT1 = − 



 + ′ + + +( )′

=
∑k

C
A c l c l c F c D ci l l F D

i
i i i i i

sin
1

41

s (5�139)

where the angles l,   ′l , F, D, and Ω are the fundamental arguments of the
nutation series. They are calculated from Eqs. (5�65) and (5�66) as a function of
coordinate time ET of the Solar-System barycentric or local geocentric space-time
frame of reference. The positive or negative integer multipliers   cli

,   cli′ ,   cFi
,   cDi

,
and   c iΩ  of these arguments for each term i of ∆UT1 along with the amplitude Ai

of each term are given in Table 5�2. This table is the first part of Table 1 of Yoder
et al. (1981), which applies for the 41 short-period terms of UT1, which have
periods between 5 and 35 days. The second part of Table 1 of Yoder et al. (1981)
applies for the 21 long-period terms of UT1, which have periods between 91 and
6791 days. Eq. (5�139) contains a minus sign because the data in Table 1 of Yoder
et al. (1981) applies for − ∆UT1. Their table lists the amplitude Ai for term 22 as
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50 x 10−7 s. However, according to J. G. Williams (personal communication), Ai

for term 22 should be −50 x 10−7 s, which is shown in Table 5�2.

Table 5�2

Short-Period Terms of UT1

Term
i

Period
days

Coefficients of Nutation
Angles in Argument

Amplitude
Ai

  cli   cli′   cFi   cDi   c iΩ 10�7 s

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

5.64
6.85
6.86
7.09
7.10
9.11
9.12
9.13
9.18
9.54
9.56
9.61

12.81
13.17
13.61
13.63
13.66
13.75
13.78
13.81
14.19
14.73
14.77
14.80
15.39
23.86
23.94
25.62
26.88
26.98
27.09
27.44
27.56
27.67
29.53
29.80
31.66
31.81
31.96
32.61
34.85

1
2
2
0
0
1
1
1
3

−1
−1
1
2
0
0
0
0
2
2
2
0
0
0
0
0
1
1
1

−1
−1
−1
1
1
1
0
1

−1
−1
−1
1

−1

0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0

−1
0
0
0

−1
0
0
1
0
0
0
0
0
0
0

−1
0
0
0
0

−1

2
2
2
2
2
2
2
2
0
2
2
0
2
2
2
2
2
0
0
0
2
0
0
0
0
2
2
0
2
2
2
0
0
0
0
0
0
0
0

−2
0

2
0
0
2
2
0
0
0
0
2
2
2

−2
0
0
0
0
0
0
0
0
2
2
2
2

−2
−2
0
0
0
0
0
0
0
1
0
2
2
2
2
2

2
1
2
1
2
0
1
2
0
1
2
0
2
2
0
1
2

−1
0
1
2

−1
0
1
0
1
2
0
0
1
2

−1
0
1
0
0

−1
0
1

−1
0

25
43

105
54

131
41

437
1056

19
87

210
81

−23
−27
318

3413
8252
−23
360
−19
26

−50
781
56
54

−53
−107
−42
−50

−188
−463
−568
8788
−579
−50
59

−125
1940
−140
−19
91
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From Yoder et al. (1981), the variations in the rotation rate of the Earth�s
fluid core are decoupled from those of the mantle. Hence, in Eq. (5�139), k is the
effective value of the Love number that causes the tidal variation in the polar
moment of inertia of the coupled mantle and oceans, and C is the dimensionless
polar moment of inertia of these coupled units. The value of k is the Earth�s bulk
Love number k2 = 0.301 minus 0.064 due to decoupling of the fluid core plus
0.040 due to ocean tides. The estimate of the coefficient k/C, which is computed
from Eqs. (24) and (28) of Yoder et al. (1981), is:

    

k
C





 = ± 0.94 0.04 (5�140)

where the 4% uncertainty consists of approximately equal terms due to ocean
tide and fluid core uncertainties.

5.3.4 PRECESSION MATRIX

In Eq. (5�115) or (5�116), the precession matrix A rotates from coordinates
referred to the mean Earth equator and equinox of J2000 (specifically, the radio
frame) to coordinates referred to the mean Earth equator and equinox of date.
Note that the (mean or true) vernal equinox of date is the ascending node of the
ecliptic (the mean orbit plane of the Earth) of date on the (mean or true) Earth
equator of date. The definition of the autumnal equinox is obtained from the
definition of the vernal equinox by replacing the ascending node of the ecliptic
with the descending node. The precession matrix A is currently computed as the
following product of three coordinate system rotations:

    A R R R= +( ) −( ) +( )z x z∆ π δ απ π
2 2

(5�141)

where the coordinate system rotation matrices are given by Eqs. (5�16) to
(5�18). The angles α  and δ are the right ascension and declination of the Earth�s
mean north pole of date relative to the mean Earth equator and equinox of
J2000. The angle ∆ is the angle along the mean Earth equator of date from its
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ascending node on the mean Earth equator of J2000 to the autumnal equinox.
Adding π to ∆ takes you from the autumnal equinox to the vernal equinox. The
angles α, δ, and ∆ can be calculated from the equatorial precession angles ζA, zA,
and θA:

    

α ζ

δ θπ

π

= −

= −

= −

A

A

Az
2

2∆

rad (5�142)

The equatorial precession angles are given by equations in Table 5 of Lieske et al.
(1977) or by Eqs. (7) of Lieske (1979). We want these angles to be expressed as
polynomials in Julian centuries of coordinate time ET past J2000.0. This is the
variable T given by Eq. (5�65). The desired expressions are obtained by setting
T = 0 in the referenced equations of Lieske. The remaining variable t in these
equations is our variable T:

    

ζ

θ

A

A

A

T T T

z T T T

T T T

= ′′ + ′′ + ′′

= ′′ + ′′ + ′′

= ′′ − ′′ − ′′

2306 2181 0 30188 0 017998

2306 2181 1 09468 0 018203

2004 3109 0 42665 0 041833

2 3

2 3

2 3

. . .

. . .

. . .

(5�143)

These angles can be converted from arcseconds to radians by dividing by
206,264.806,247,096. The geometry used in Eqs. (5�141) and (5�142) is shown in
Fig. 1 of Lieske et al. (1977) and Lieske (1979).

The precession matrix given by Eq. (5�141) can be simplified. First,
substitute α, δ, and ∆ from Eqs. (5�142) into (5�141):

    A R z R RA A A= − −( ) ( ) −( )z x z
π πθ ζ2 2

(5�144)

which is the same as:

    A R z R R R RA A A= −( ) −( ) ( ) ( ) −( )z z x z z
π πθ ζ2 2

(5�145)
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Using Eqs. (5�16) to (5�18),

    R R R RA Az x z y−( ) ( ) ( ) = ( )π πθ θ2 2
(5�146)

which is obvious from Fig. 1 of Lieske et al. (1977) and Lieske (1979). Substituting
Eq. (5�146) into (5�145) gives:

    A R z R RA A z A= −( ) ( ) −( )z y θ ζ (5�147)

which is also obvious from Fig. 1 of Lieske et al. (1977) and Lieske (1979).
Lieske (1979) gives two equivalent expressions for the precession matrix A in the
unnumbered equation after Eq. (5). The first expression is Eq. (5�144) and the
second expression is Eq. (5�147).

The precession matrix A is currently computed from Eq. (5�144) and
Eqs. (5�143). However, it would be simpler to calculate A from Eq. (5�147) and
Eqs. (5�143). Also, the use of these equations would reduce the roundoff errors
in the computed precession matrix.

From Eq. (5�144), the derivative of the precession matrix A with respect to
coordinate time ET is given by:

    

ú ú

ú

ú

A
dR z

d z
R R z

R z
dR

d
R

R z R
dR

d

A

A
A A A

A
A

A
A A

A A
A

A
A

= −
− −( )

− −( ) ( ) −( )

+ − −( ) ( )
( ) −( )

− − −( ) ( )
−( )

−( )

z
x z

z
x

z

z x
z

π

π
π

π π

π
π

π

θ ζ

θ
θ

ζ θ

θ
ζ

ζ
ζ

2

2
2

2 2

2
2

2

rad/s (5�148)

where the rotation matrices and their derivatives with respect to the rotation
angles are given by Eqs. (5�16) to (5�18). The equatorial precession angles are
computed from Eqs. (5�143). These equations and the equation for the mean
obliquity of the ecliptic (ε ) (which will be used in the next section) have the form:
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    ζ θ εA A Az a bT cT dT, , ,   = + + +2 3 arcseconds (5�149)

where T is given by Eq. (5�65) and a is zero for the three equatorial precession
angles. The time derivatives of these angles in radians per second of coordinate
time ET are:

    
ú , ú , ú , ú

, . , ,
ζ θ εA A Az

b cT dT
=

+ +
× ×

2 3
206 264 806 247 096 86400 36525

2

rad/s (5�150)

If the precession matrix A was computed from Eq. (5�147) instead of Eq. (5�144),
its time derivative     úA  would be computed from:

    

ú ú

ú

ú

A
dR z

d z
R R z

R z
dR

d
R

R z R
dR

d

A

A
A A A

A
A

A
A A

A A
A

A
A

= −
−( )

−( ) ( ) −( )

+ −( ) ( )
( ) −( )

− −( ) ( ) −( )
−( )

z
y z

z
y

z

z y
z

θ ζ

θ

θ
ζ θ

θ
ζ

ζ
ζ

rad/s (5�151)

5.3.5 NUTATION MATRIX

In Eq. (5�115) or (5�116), the nutation matrix N rotates from coordinates
referred to the mean Earth equator and equinox of date to coordinates referred
to the true Earth equator and equinox of date. The nutation matrix N is
computed from the following sequence of three coordinate system rotations:

    N R R R= − −( ) −( ) ( )x z xε ε ψ ε∆ ∆ (5�152)

where the coordinate system rotation matrices are given by Eqs. (5�16) to
(5�18). The mean obliquity of the ecliptic ε  is the inclination of the ecliptic (the
mean orbit plane of the Earth) of date to the mean Earth equator of date. It is
given by equations in Table 5 of Lieske et al. (1977). We want it to be expressed as
a polynomial in Julian centuries of coordinate time ET past J2000.0, which is the
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variable T given by Eq. (5�65). The desired expression is obtained by setting the
variable T = 0 in the equations for     ε εA A and  in Table 5 of Lieske et al. (1977) and
denoting their variable t as our variable T:

    ε = ′′ − ′′ − ′′ + ′′84 381 448 46 8150 0 00059 0 0018132 3, . . . .T T T (5�153)

This angle can be converted from arcseconds to radians by dividing by
206,264.806,247,096. The coordinate system rotations in Eq. (5�152) are based
upon the geometry in Fig. 3.222.1 on p. 115 of Explanatory Supplement (1992).
Eq. (3.222�3) of this reference is the same as Eq. (5�152). In the former equation,
the true obliquity of the ecliptic ε is the inclination of the ecliptic of date to the
true Earth equator of date. It is the sum of the mean obliquity ε  and the nutation
in obliquity ∆ε:

ε = ε + ∆ε rad (5�154)

From the referenced figure, the nutation in longitude ∆ψ is the celestial longitude
(measured in the ecliptic) of the mean equinox of date measured from the true
equinox of date. The nutation in longitude ∆ψ and the nutation in obliquity ∆ε in
radians and their time derivatives   ∆ ∆ψ ε( )⋅ ( )⋅ and  in radians per second are
obtained as described in Section 5.3.2. These quantities are the sum of the
quantities (5�136) obtained from the 1980 IAU Theory of Nutation (Seidelmann,
1982) plus the corrections (5�137) obtained from the EOP file. We use the
notation of the former quantities to denote the sum of (5�136) and (5�137), which
contains the corrected nutation angles and their time derivatives.

From Eq. (5�152), the derivative of the nutation matrix N with respect to
coordinate time ET is given by:
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ú ú

ú
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+ − −( ) −( ) ( )
( )

x
z x

x x

x z
x

ε ε
ε ε

ψ ε ε ε
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∆

∆ ∆

∆
∆

∆
∆

∆ ∆

rad/s (5�155)

where the rotation matrices and their derivatives with respect to the rotation
angles are given by Eqs. (5�16) to (5�18). The time derivative   úε  of the mean
obliquity of the ecliptic is calculated from Eqs. (5�153), (5�149), and (5�150).

5.3.6 ROTATION MATRIX THROUGH TRUE SIDEREAL TIME

In Eq. (5�115) or (5�116), the matrix B rotates from space-fixed coordinates
referred to the true Earth equator and equinox of date to Earth-fixed coordinates
referred to the true pole, prime meridian, and equator of date. Subsection 5.3.6.1
gives the formulas for B, its time derivative     úB , its second time derivative     úúB , and
the partial derivative of B with respect to Universal Time UT1. These quantities
are a function of true sidereal time θ, its time derivative   úθ , and the partial
derivative of θ with respect to UT1. The formulation for calculating these three
quantities is given in Subsection 5.3.6.2. The matrix     úúB  is used to calculate     

úúTE

given by Eq. (5�129). Subsection 5.3.6.1 gives a simple algorithm for calculating

    
úúTE . Calculation of true sidereal time θ requires that the time argument, which is

coordinate time ET, be transformed to Universal Time UT1 using the complete
expression for ET − TAI in the Solar-System barycentric frame. Evaluation of this
time difference requires the geocentric space-fixed position vector of the tracking
station, which can be calculated from the approximate algorithm given in
Subsection 5.3.6.3.

5.3.6.1 Rotation Matrix B, its Time Derivatives, and Partial Derivative With

Respect to Universal Time UT1

The matrix B rotates from space-fixed coordinates referred to the true
Earth equator and equinox of date to Earth-fixed coordinates referred to the true
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pole, prime meridian, and equator of date. It is a rotation about the z axis
through true sidereal time θ:

    B R= ( )z θ (5�156)

where the coordinate system rotation matrix is given by Eq. (5�18). True sidereal
time θ is the Greenwich hour angle of the Earth�s true vernal equinox of date. It
is measured westward from the true prime (i.e., 0°) meridian of date about the
true pole of date to the true vernal equinox of date.

The derivative of the rotation matrix B with respect to coordinate time ET
is given by:

    
ú úB

dR
d

=
( )z θ

θ
θ rad/s (5�157)

where the derivative of the coordinate system rotation matrix with respect to the
coordinate system rotation angle is given by Eq. (5�18). The sidereal rate   úθ  is the
derivative of true sidereal time θ with respect to coordinate time ET.

The second time derivative of the rotation matrix B with respect to
coordinate time ET is given to sufficient accuracy by:

    
úú úB R= − ( )[ ] ∗

z θ θ2 rad/s2 (5�158)

where the ∗  indicates that the (3,3) element of the rotation matrix given by
Eq. (5�18) is changed from 1 to 0. The desired expression for the second time
derivative of TE can be obtained by substituting Eq. (5�158) into Eq. (5�129).
However, this process will be accomplished in two steps. First, substitute
Eq. (5�158) without the superscript ∗ , Eq. (5�156), and Eq. (5�115) into
Eq. (5�129), which gives:

    
úú úT TE E= − θ 2 rad/s2 (5�159)
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The second step is to correct the calculation of TE from Eq. (5�115) by setting the
(3,3) element of B given by Eq. (5�156) and Eq. (5�18) to zero. In Eq. (5�115), this
change zeroes out row three inside of the parentheses and zeroes out column
three after taking the transpose. Hence,     

úúTE  can be calculated by evaluating
Eq. (5�159) and then setting column three of this 3 x 3 matrix to zero.

From Eq. (5�156), the partial derivative of the rotation matrix B with
respect to Universal Time UT1 is given by:

    

∂
∂

θ
θ

∂θ
∂

B dR
dUT1 UT1
z=
( )

rad/s (5�160)

where the derivative of the rotation matrix with respect to the rotation angle is
given by Eq. (5�18).

5.3.6.2 Sidereal Time, Its Time Derivative, and Partial Derivative With

Respect to Universal Time UT1

True sidereal time θ is calculated as the sum of mean sidereal time θM plus
the equation of the equinoxes ∆θ:

  θ θ θ= +M ∆ rad (5�161)

Mean sidereal time θM is the Greenwich hour angle of the Earth�s mean vernal
equinox of date. It is measured westward from the true prime meridian of date
about the true pole of date to the meridian that contains the mean vernal
equinox of date. Subsection 5.3.6.2.1 develops the equations for calculating mean
sidereal time θM, its time derivative   

úθM with respect to coordinate time ET, and
its approximate derivative with respect to Universal Time UT1. Subsection
5.3.6.2.2 gives the existing formulation for calculating the equation of the
equinoxes ∆θ and its time derivative ∆θ( )⋅ with respect to coordinate time ET.
Subsection 5.3.6.2.3 gives the proposed International Earth Rotation Service
(IERS) equation for ∆θ and its time derivative ∆θ( )⋅.
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True sidereal time θ is actually calculated from the following version of
Eq. (5�161):

  
θ θ θ π= +( )







M

r r
fractional
part

∆ 2 rad (5�162)

where the superscript r indicates that the quantity has the units of revolutions,
where one revolution of the quantity is 2π radians or   129600 ′′0 . The subscript
�fractional part� indicates that true sidereal time θ in revolutions is computed
modulo 1 revolution. That is, the integral number of revolutions of θ are
discarded leaving θ as a fraction of one revolution. Multiplying by 2π converts θ
to radians. If sidereal time θ is calculated one Julian century before of after J2000,
36625 revolutions of sidereal time will be discarded. Hence, five significant digits
of θ will be lost.

From Eq. (5�161), the derivative of true sidereal time θ with respect to
coordinate time ET is given by:

  
ú úθ θ θ= +( )⋅M ∆ rad/s (5�163)

In Eq. (5�161), mean sidereal time θM is a function of Universal Time UT1
and the equation of the equinoxes ∆θ is a function of coordinate time ET. Hence,

    

∂θ
∂

θ
UT1 UT1

M=
d
d

rad/s (5�164)

5.3.6.2.1 Mean Sidereal Time and Its Time Derivatives

From p. S13 of Supplement To The Astronomical Almanac 1984, the
expression for mean sidereal time θM at 0h UT1 is given by:

    

θM
h s

U

s
U

s
U

UT10 24 110 548 41 8 640 184 812 866

0 093 104 6 2 102 6 3

( ) = +

+ − × −

, . , , , . ,

. , .

s T

T T
(5�165)



SECTION  5

5�66

where

    

TU = Julian centuries of 36525 days of 86400 s of Universal Time UT1

elapsed since January 1,  2000,  12h  UT1 J2000.0;  JD 245,1545.0( )

= UT1
86400 × 36525

(5�166)

where

UT1 = seconds of Universal Time UT1 elapsed since
January 1, 2000, 12h UT1.

Note that UT1 is an elapsed interval of UT1 time. UT1 time, which is measured in
seconds past the start of the day, is equal to the interval UT1, defined above, plus
12h. The interval UT1 used in Eq. (5�166) is obtained by transforming coordinate
time ET (measured in seconds past January 1, 2000, 12h ET) as described in detail
in Section 5.3.2, item 5.

We need to convert Eq. (5�165) to a general expression for mean sidereal
time θM at the current value of UT1. This can be done by using the artifice of the
fictitious mean Sun which moves in the equatorial plane at a nearly constant rate.
Universal Time UT1 is equal to the hour angle of the fictitious mean Sun (HAMS)
plus 12 hours:

  UT1 HAMS 12h= + (5�167)

Also, mean sidereal time is equal to the hour angle of the fictitious mean Sun plus
the right ascension of the fictitious mean Sun:

  θM HAMS RAMS= + (5�168)

Substituting HAMS from (5�167) into (5�168) gives:

  
θM

hUT1 RAMS 12= + −( ) (5�169)
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At 0h UT1,

  
θM

h hUT1 RAMS 120( ) = −( ) (5�170)

Substituting the right-hand side of (5�170) into (5�169) gives the desired
expression for mean sidereal time θM:

  
θ θM M

hUT1 0 UT1= + ( ) (5�171)

where the second term on the right-hand side is Eq. (5�165) evaluated at the
current value of TU, not at 0h UT1 time. The first term on the right-hand side is
UT1 time, which is the interval UT1 in Eq. (5�166) plus 12h. From Eq. (5�166), the
interval UT1 can be expressed as:

    UT1 s
U= ×3 155 760 000, , , T (5�172)

Hence, from Eq. (5�171) and the explanation following it, the expression for
mean sidereal time θM is Eq. (5�165) plus 12h = 43200s plus the interval UT1 given
by Eq. (5�172):

    

θM
s s s

U

s
U

s
U

= + +( )
+ − × −

67 310 548 41 3 155 760 000 8 640 184 812 866

0 093 104 6 2 102 6 3

, . , , , , . , , . ,

. , .

T

T T

(5�173)

which is the equation for GMST at the bottom of p. S15 of Supplement To The

Astronomical Almanac 1984. Eq. (5�162) requires θM in revolutions, which is given
by:

    
θM

r U U U=
+ + +J K T L T M T2 3

86400
rev (5�174)

where
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J = 67,310s.548,41
K = 3,164,400,184s.812,866
L = 0s.093,104

M = − 6s.2 x 10−6

From Eq. (5�174) and (5�166), the derivative of mean sidereal time θM

with respect to Universal Time UT1 in radians per second is given by:

    

d
d

K LT MTθ
πM U U

UT1
=

+ +

( ) ×

2 3

86400 36525
2

2

2 rad/s (5�175)

An approximate value of this derivative, required for use in Eqs. (5�164), (5�160),
and (5�135) is given by:

    

d
d

Kθ πM

UT1
rad/s=

( ) ×
= × −2

86400 36525
0 729 211 59 102

4. , , (5�176)

The derivative of θM with respect to coordinate time ET is given by:

    
úθ

θ
M

M

UT1
UT1
ET

=
d
d

d
d

rad/s (5�177)

The transformation of coordinate time ET to Universal Time UT1, which is
described in Section 5.3.2, item 5, is given by:

  UT1 ET ET TAI TAI UT1 UT1= − −( ) − −( ) + ∆ s (5�178)

where I have assumed that the TP array or the EOP file contains regularized UT1.
The derivative of UT1 with respect to ET is given by:

    

d
d
UT1
ET

ET TAI TAI UT1 UT1= − −( )⋅ − −( )⋅ + ( )⋅1 ∆ s/s (5�179)
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Since the computed values of observed quantities are computed from position
coordinates or differenced position coordinates, accurate velocities are not
required in program Regres. Hence, on the right-hand side of (5�179), we only
need to keep the largest time derivative, which is   TAI UT1−( )⋅ . It can be as large
as 0.4 x 10−7 s/s. Substituting this approximation to Eq. (5�179) and Eq. (5�175)
into Eq. (5�177) gives:

    

úθ πM
U U TAI UT1=

+ +

( ) ×
− −( )⋅[ ]K LT MT2 3

86400 36525
1 2

2

2 rad/s (5�180)

This equation is used in Eq. (5�163).

5.3.6.2.2 Existing Formulation for the Equation of the Equinoxes

The existing expression for the equation of the equinoxes is:

  ∆ ∆ ∆θ ψ ε ε= +( )cos rad (5�181)

where the nutation in longitude ∆ψ and the nutation in obliquity ∆ε are obtained
as described in Section 5.3.2 and include the corrections obtained from the EOP
file. The mean obliquity of the ecliptic ε  is calculated from Eq. (5�153) and then
converted to radians. Eq. (5�181) is based upon the geometry shown in
Fig. 3.222.1 on p. 115 of the Explanatory Supplement (1992). Eq. (5�162) requires ∆θ
in revolutions, which is given by:

  
∆

∆ ∆
θ

ψ ε ε
π

r =
+( )cos

2
rev (5�182)

Eq. (5�163) uses the derivative of ∆θ  with respect to coordinate time ET in
radians per second. From (5�181), it is given by:

  

∆ ∆ ∆

∆ ∆ ∆

θ ψ ε ε

ψ ε ε ε ε

( )⋅ = ( )⋅ +( )
− ( ) +( ) + ( )⋅[ ]

cos

sin ú
rad/s (5�183)
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where   ∆ ∆ψ ε( )⋅ ( )⋅ and  are obtained as described in Section 5.3.2 and   úε  is
calculated from Eqs. (5�153), (5�149), and (5�150).

5.3.6.2.3 Proposed Formulation for the Equation of the Equinoxes

From page 30 of International Earth Rotation Service (1992) and pages 21�
22 of International Earth Rotation Service (1996), the proposed expression for the
equation of the equinoxes, which should be used starting on January 1, 1997, is:

  ∆ ∆ Ω Ωθ ψ ε= + ′′ + ′′cos . sin . sin0 00264 0 000063 2 (5�184)

where Ω is the longitude of the mean ascending node of the lunar orbit on the
ecliptic. It is defined by Eq. (5�64) and calculated from Eq. (5�66). Eq. (5�184) is
Eq. (A2�35) of Aoki and Kinoshita (1983).

The existing expression for the equation of the equinoxes is given by
Eq. (5�181). Expanding this equation and retaining all terms to the second order
in the nutations gives:

  ∆ ∆ ∆ ∆θ ψ ε ψ ε ε= − ( )cos sin (5�185)

The first term of this expression is the first term of Eq. (5�184). Differentiating the
second term with respect to time gives:

  − ( )⋅ ( ) − ( ) ( )⋅∆ ∆ ∆ ∆ψ ε ε ψ ε εsin sin (5�186)

where the derivative of   sinε  has been ignored. If the expression (5�186) were
integrated with respect to time, we would obtain the second term of
Eq. (5�185). Adding it to the first term of this equation would give the existing
expression (5�181) for the equation of the equinoxes. The first term of (5�186) is
integrated with respect to time to give a periodic term of the new expression for
the equation of the equinoxes. Integration of the second term of (5�186) with
respect to time would give another periodic term in the equation of the
equinoxes. This term represents a periodic movement of the true meridian
containing the mean equinox of date relative to the true equator of date. The
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periodic movement of this meridian also produces an equal and opposite
periodic term in the expression for mean sidereal time. These equal and opposite
terms cancel in calculating true sidereal time from Eq. (5�161). Hence, the second
term of (5�186) is discarded. Its time integral is not included in the new
expression for the equation of the equinoxes.

The accumulated luni-solar precession in right ascension along the true
equator of date is given by:

    
ú cosψ ε ε+( )∫ ∆ dt (5�187)

where planetary precession is ignored and   úψ  is the rate of luni-solar precession
along the ecliptic. Expanding gives the accumulated luni-solar precession in right
ascension, which is included in the precession matrix (5�147), and the following
term:

    
− ( )∫ ú sinψ ε ε∆ dt (5�188)

which is a periodic variation in the accumulated precession in right ascension due
to the nutation in obliquity ∆ε.

The new expression for the equation of the equinoxes is given by the first
term of Eq. (5�185) plus the time integral of the first term of (5�186) plus the
term (5�188):

    
∆ ∆ ∆ ∆ ∆θ ψ ε ψ ε ε ψ ε ε= − ( ) − ( )⋅ ( )



∫∫cos ú sin sindt dt

p
(5�189)

where the subscript p indicates that only the periodic terms are retained. This
equation is the same as the first three terms of Eq. (A2�33) of Aoki and Kinoshita
(1983). The authors state that the remaining terms of this equation are negligible.

Eq. (5�189) can be evaluated by evaluating the nutations in longitude and
obliquity from selected terms of the series expressions for these quantities. First,
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from Table 1 of Seidelmann (1982), evaluate the nutations in longitude and
obliquity from term 1 of the series expressions for these angles:

  

∆ Ω
∆ Ω

ψ
ε

= − ′′
= ′′

17 1996
9 2025

. sin

. cos
(5�190)

Substituting these equations, ε  obtained from Eq. (5�153) at J2000, and   úψ
obtained from Table 3.211.1 on p. 104 of the Explanatory Supplement (1992) into
terms 2 and 3 of Eq. (5�189) and using   úΩ  obtained from Eq. (5�66) gives:

  ′′0 .00265 sinΩ (5�191)

which is obtained from term 2 of (5�189), and

  ′′0 .000076 sin 2Ω (5�192)

which is obtained from term 3 of (5�189). Then, from Table 1 of Seidelmann
(1982), evaluate the nutation in obliquity from term 2 of the series expression for
this angle:

  ∆ε = − ′′0 .0895 cos2Ω (5�193)

Substituting this equation into term 2 of Eq. (5�189) gives:

  − ′′0 .000013 sin 2Ω (5�194)

Evaluating the second term of Eq. (5�189) as the sum of terms (5�191) and
(5�194), and the third term as (5�192) gives Eq. (5�184) for the new expression
for the equation of the equinoxes, except for a change of   ′′0 .00001 in the
coefficient of the   sinΩ  term.

Eq. (5�162) requires ∆θ in revolutions, which is given by:

  
∆

∆ Ω Ω
θ

ψ ε
π

r = +
′′ + ′′cos . sin . sin

, ,2
0 00264 0 000063 2

1 296 000
rev (5�195)



POSITION  VECTOR  OF  TRACKING  STATION

5�73

Eq. (5�163) uses the derivative of ∆θ with respect to coordinate time ET in
radians per second. From Eq. (5�184), it is given by:

  

∆ ∆ ∆
Ω Ω

Ω

θ ψ ε ψ ε ε( )⋅ = ( )⋅ − ( ) ( )

+
′′ + × ′′

cos sin ú

. cos . cos
, . , ,

ú0 00264 2 0 000063 2
206 264 806 247 096

rad/s (5�196)

Since Ω given by Eq. (5�66) and ε  given by Eq. (5�153) have the same form, their
derivatives with respect to coordinate time ET can be calculated using
Eqs. (5�149) and (5�150).

From Eq. (A2�36) of Aoki and Kinoshita (1983), the sum of the secular
terms, which were discarded from the third term of Eq. (5�189), is given by:

    − ′′0 .00388 T (5�197)

where T is given by Eq. (5�65). In principle, (5�197) should be added to
Eq. (5�173) for mean sidereal time. In practice, this change will not be made, and
the neglected term will be absorbed into the �observed� value of Universal Time
UT1. After one century, UT1 will change by 2.6 x 10−4 s. This is quite negligible
compared to leap seconds, which occur on the order of once a year.

5.3.6.3 Algorithm for Approximate Geocentric Space-Fixed Position Vector

of Tracking Station

In Section 5.3.2, Item 5, the time argument in coordinate time ET is
transformed to Universal Time UT1 using the complete expression for the time
difference ET − TAI in the Solar-System barycentric frame of reference. This
expression is Eq. (2�23), which can be evaluated using the very approximate
algorithm for the geocentric space-fixed position vector of the tracking station

    rA
E , which is given in this section.

True sidereal time θ is approximated by mean sidereal time θM, given by
Eq. (5�174). In this equation, the L and M coefficients are ignored, and TU given
by Eq. (5�166) is approximated by T given by Eq. (5�65). Hence,
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θ π=
+



















J K T
86400

2
fractional
part

rad (5�198)

and the geocentric space-fixed position vector of the tracking station is given
approximately by:

      

rA
E =

+( )
+( )

















u

u

v

cos
sin

θ λ
θ λ km (5�199)

where u, v, and λ are the input Earth-fixed 1903.0 cylindrical coordinates of the
tracking station, uncorrected for polar motion.

The error in     rA
E  calculated from Eqs. (5�198) and (5�199) is less than

300 km. From the fourth term on the right-hand side of Eq. (2�23), the resulting
error in TAI and UT1 is less than 10−7 s. This will produce an error in the space-
fixed position vector of the tracking station, calculated from Eq. (5�113) of
0.004 cm, which is negligible.

5.4 GEOCENTRIC SPACE-FIXED POSITION, VELOCITY,
AND ACCELERATION VECTORS OF TRACKING
STATION

5.4.1 ROTATION FROM EARTH-FIXED TO SPACE-FIXED

COORDINATES

The transformation from the Earth-fixed position vector rb of a tracking
station on Earth to the corresponding space-fixed position vector     rTS

E  of the
tracking station relative to the Earth is given by Eq. (5�113). The variables in this
equation are described in the paragraph containing Eq. (5�113).

Calculation of the computed values of observed quantities (e.g., doppler
and range observables) requires accurate and precise values of position vectors
of the participants (e.g., the spacecraft and the tracking station). Since the
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computed values of doppler observables are calculated from differenced round-
trip light times divided by their time separation, high-accuracy velocity and
acceleration vectors are not required in program Regres. The maximum Earth-
fixed velocity of the tracking station is about 3 x 10−5 m/s due to solid Earth
tides. This affects the tenth significant digit of the velocity of the tracking station
relative to the Solar-System barycenter, which can be ignored. Hence, the
geocentric space-fixed velocity and acceleration vectors of the tracking station
can be computed from derivatives of Eq. (5�113) with respect to coordinate time
ET holding rb fixed:

      ú
úr rTS

E
E b= T km/s (5�200)

      úú
úúr rTS

E
E b= T km/s2 (5�201)

where     
úTE  is given by Eq. (5�128). The formulations for the time derivatives in

this equation are all available within Section 5.3. The second time derivative of TE

is obtained by evaluating Eq. (5�159) and then setting column three of this 3 x 3
matrix to zero.

5.4.2 TRANSFORMATION OF GEOCENTRIC SPACE-FIXED POSITION

VECTOR FROM LOCAL GEOCENTRIC TO SOLAR-SYSTEM

BARYCENTRIC RELATIVISTIC FRAME OF REFERENCE

The geocentric space-fixed position vector of the tracking station
calculated from Eq. (5�113) is in the local geocentric space-time frame of
reference. If Regres is operating in this frame of reference, no further calculations
are required. However, if Regres is operating in the Solar-System barycentric
relativistic frame of reference, then this vector must be transformed from the
local geocentric to the Solar-System barycentric relativistic frame of reference
using Eq. (4�10).

In Eq. (4�10), rGC is     r TS
E  calculated from Eq. (5�113). Calculation of the

remaining variables in (4�10) is described in the paragraph after Eq. (4�11). In
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evaluating the gravitational potential UE at the Earth, the only term that needs to
be included is the potential due to the Sun. The constant     �L  is given by (4�17).

5.5 PARTIAL DERIVATIVES OF GEOCENTRIC SPACE-
FIXED POSITION VECTOR OF TRACKING STATION

This section gives the formulation for calculating partial derivatives of the
geocentric space-fixed position vector     rTS

E  of the tracking station with respect to
solve-for or consider parameters. These partial derivatives can be used to
estimate the values of the parameters (i.e., solve-for parameters) or to consider
the uncertainty in the parameters when calculating the covariance matrix for the
estimated parameters (i.e., consider parameters). Subsection 5.5.1 gives the
partial derivatives for the parameters which affect the Earth-fixed position vector
rb of the tracking station. The next two Subsections give partials for parameters
which affect the Earth-fixed to space-fixed transformation matrix TE. Subsection
5.5.2 gives the partial derivatives for the frame-tie rotation angles rz, ry, and rx.
Subsection 5.5.3 gives the partial derivative with respect to Universal Time UT1,
which affects mean sidereal time θM.

5.5.1 PARAMETERS AFFECTING EARTH-FIXED POSITION VECTOR OF

TRACKING STATION

From Eq. (5�113), for those parameters q which affect rb and not TE,

      

∂
∂

∂
∂

r

q

r

q
TS
E

E
b= T (5�202)

From Eqs. (5�1) and (5�2), the partial derivatives of rb with respect to the
input 1903.0 cylindrical coordinates u, v, and λ of the tracking station are:

      

∂
∂

λ
λ α αrb

b

b

0

0u

x
y

u
=













=
















cos
sin

0 0

(5�203)
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where the components in the second matrix on the right-hand side are those of
Eq. (5�2).

      

∂
∂

α
rb

v
=













0
0
1

(5�204)

      

∂
∂λ

λ
λ α α

rb
b

b

0

0
0

=
−













=
−















u
u

y
x

sin
cos
0

(5�205)

From Eqs. (5�1) and (5�3), the partial derivatives of rb with respect to the input
1903.0 spherical coordinates r, φ, and λ of the tracking station are:

      

∂
∂

φ λ
φ λ

φ
α αr

rb
b0r r

=












= 





cos cos
cos sin

sin
(5�206)

where     r b0
 is given by Eq. (5�3).

      

∂
∂φ

φ λ
φ λ

φ
α

rb =
−
−













r
r

r

sin cos
sin sin

cos
(5�207)
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∂λ

φ λ
φ λ α α
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b

b

0
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where the components in the second matrix on the right-hand side are those of
Eq. (5�3). From Eq. (5�1), the partial derivative of rb with respect to the scale
factor α is given by:
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where     rb0
 is given by Eq. (5�2) or (5�3).
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From Eqs. (5�1) and (5�12), the partial derivatives of rb with respect to the
north (vN), east (vE), and up (vU) components of the Earth-fixed velocity vector of
the tracking station (due to plate motion) are given by:
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where t and t0 are the time argument and the user input epoch in seconds of
coordinate time ET past J2000.

From Eqs. (5�1) and (5�13), the partial derivatives of rb with respect to the
rectangular components of the Earth-fixed vector from the center of mass of the
Earth to the origin for the input 1903.0 station coordinates are given by:
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From Eqs. (5�1) and (5�22), the partial derivatives of rb with respect to
constant corrections to the X and Y angular coordinates of the true pole of date
relative to the mean pole of 1903.0 are given by:
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where xb, yb, and zb are rectangular components of the sum of the first four
terms of Eq. (5�1). However, to sufficient accuracy, use the rectangular
components of the first term of Eq. (5�1).

5.5.2 FRAME-TIE ROTATION ANGLES

From Eq. (5�113), the partial derivatives of the geocentric space-fixed
position vector of the tracking station with respect to the frame-tie rotation
angles rz, ry, and rx are given by:
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where the partial derivatives of TE with respect to rz, ry, and rx are given by
Eqs. (5�132) to (5�134), which use Eqs. (5�120) to (5�122).

5.5.3 UNIVERSAL TIME UT1

The partial derivative of the geocentric space-fixed position vector of the
tracking station with respect to Universal Time UT1 is given by:
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where the partial derivative on the right-hand side is given by Eqs. (5�135),
(5�160), (5�18), (5�164), and (5�176). The vector rb can be approximated by the
first term of Eq. (5�1), which is evaluated using Eq. (5�2). Assembling all of these
pieces and simplifying gives:
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where   NA( )′  is given by Eq. (5�130), sidereal time θ is given by Eq. (5�162), and
u and λ are input 1903.0 cylindrical station coordinates.
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